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Tandem Production Lines
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A production/inventory system with 𝑁 workstations connected via 
intermediate buffers, terminating at a finished goods buffer.

 Exponential processing times, Poisson demand.

Station 1 Station 2

…
Station N

Intermediate Buffers End Item Buffer

Each item is processed at each station consecutively

Demand



We consider the production control of this Markovian
make-to-stock tandem production system.
◦ An MDP

At decision epochs:
Production decisions (continue or stop) at each station

Looking for:
The policies that minimize long-run system cost
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Modeling Framework
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Literature

Veatch and Wein (1994) : first to apply optimal control paradigm in two-
station tandem lines. 

Karaesmen and Dallery (2000) : studied the performance of available pull 
mechanisms in two-station tandem lines.

In this study, we propose a methodology based on the optimal control 
paradigm to characterize the best production policies in a way that

longer (more than two stations) lines, multi product, breakdowns and
repairs can be analyzed

• comprehensive numerical experiments 
• observe the system response to the changes in parameters, and induce 
managerial insights for design and control of the system.
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• Extra steps to obtain some performance statistics

• Imposing a policy, determining the upper bounds
for buffer levels, imposing desired service levels
etc. 
• -> Difficult and for some cases impossible via

VI
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In order to obtain optimal policies faster with a more 
transparent representation, we prescribe

a Linear Programming approach.

Via LP,
◦ We reduce the run times, 
◦ Directly obtain steady state probabilities.

◦ Average inventory levels
◦ Service levels etc.

In addition, we gain the flexibility to impose a variety of  systemwide
specifications and policy structures…
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Linear Programming Approach
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LP Formulation

Indices and Parameters:

𝑖: Stations, 𝑖 ∈ {1,2, … , 𝑁}

𝑀𝑖: Inventory truncation level for the buffer after station 𝑖

𝑥: Intermediate and finished items inventory level (state vector) 
◦ 𝑥 ∈ 𝕊 = { 𝑥1, 𝑥2, … , 𝑥𝑁 |𝑥𝑖 ∈ {0,1,… ,𝑀𝑖} }

𝑢: Production decision for each station
◦ 𝑢 ∈ 𝕌 𝑥 = 𝑢1, 𝑢2, … , 𝑢𝑁 𝑢𝑖 ∈ 0,1 , 𝑢𝑖 = 0 if 𝑥𝑖−1 = 0 𝑜𝑟 𝑥𝑖 = 𝑀𝑖

𝜇𝑖: Processing rate for station 𝑖

𝜆: Demand rate 

ℎ𝑖: Inventory holding cost for the buffer after station 𝑖

𝑐: Unit lost sales cost
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LP Formulation

Minimize σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝐶𝑥𝑢𝜋𝑥𝑢

subject to

σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 σ𝑦∈𝕊 𝜈𝑦|𝑥,𝑢 − σ𝑦∈𝕊σ𝑢∈𝕌(𝑦) 𝜈𝑥|𝑦,𝑢𝜋𝑦𝑢 = 0,  ∀𝑥 ∈ 𝕊,

σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 = 1

𝜋𝑥𝑢 ≥ 0 , ∀𝑥 ∈ 𝕊, ∀𝑢 ∈ 𝕌(𝑥)
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Decision variables, 𝜋𝑥𝑢: 𝑃{𝑠𝑡𝑎𝑡𝑒 = 𝑥, 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑢}



LP Formulation

Minimize σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝑪𝒙𝒖𝜋𝑥𝑢

subject to

σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 σ𝑦∈𝕊 𝜈𝑦|𝑥,𝑢 − σ𝑦∈𝕊σ𝑢∈𝕌(𝑦) 𝜈𝑥|𝑦,𝑢𝜋𝑦𝑢 = 0,  ∀𝑥 ∈ 𝕊,

σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 = 1

𝜋𝑥𝑢 ≥ 0 , ∀𝑥 ∈ 𝕊, ∀𝑢 ∈ 𝕌(𝑥)
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Decision variables, 𝜋𝑥𝑢: 𝑃{𝑠𝑡𝑎𝑡𝑒 = 𝑥, 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑢}

𝑪𝒙𝒖: Cost incurred at state 𝑥 when action 𝑢 ∈ 𝕌(𝑥) is chosen

𝐶𝑥𝑢 =



𝑖=1

𝑚

𝑥𝑖ℎ𝑖 𝑖𝑓 𝑥𝑁 > 0



𝑖=1

𝑚

𝑥𝑖ℎ𝑖 + 𝜆𝑐 𝑖𝑓 𝑥𝑁 = 0



LP Formulation

Minimize σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝐶𝑥𝑢𝜋𝑥𝑢

subject to

σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 σ𝑦∈𝕊𝝂𝒚|𝒙,𝒖 − σ𝑦∈𝕊σ𝑢∈𝕌(𝑦) 𝜈𝑥|𝑦,𝑢𝜋𝑦𝑢 = 0,  ∀𝑥 ∈ 𝕊,

σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 = 1

𝜋𝑥𝑢 ≥ 0 , ∀𝑥 ∈ 𝕊, ∀𝑢 ∈ 𝕌(𝑥)
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Decision variables, 𝜋𝑥𝑢: 𝑃{𝑠𝑡𝑎𝑡𝑒 = 𝑥, 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑢}

𝝂𝒚|𝒙,𝒖: Rate out from state 𝑥 to state 𝑦 under decision 𝑢 ∈ 𝕌(𝑥)

𝜈𝑦|𝑥,𝑢 =

𝑢1𝜇1 𝑖𝑓 𝑦 = 𝑥 + 𝑒1

𝑢𝑖𝜇𝑖 𝑖𝑓 𝑦 = 𝑥 − 𝑒𝑖−1 + 𝑒𝑖 , 𝑖 ∈ 2,… , 𝑁
𝜆 𝑖𝑓 𝑦 = 𝑥 − 𝑒𝑁 , 𝑥𝑁 > 0
0 𝑒𝑙𝑠𝑒



LP Formulation

Minimize σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝐶𝑥𝑢𝜋𝑥𝑢

subject to

σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 σ𝑦∈𝕊 𝜈𝑦|𝑥,𝑢 − σ𝑦∈𝕊σ𝑢∈𝕌(𝑦)𝝂𝒙|𝒚,𝒖𝜋𝑦𝑢 = 0,  ∀𝑥 ∈ 𝕊,

σ𝑥∈𝕊σ𝑢∈𝕌(𝑥)𝜋𝑥𝑢 = 1

𝜋𝑥𝑢 ≥ 0 , ∀𝑥 ∈ 𝕊, ∀𝑢 ∈ 𝕌(𝑥)
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Decision variables, 𝜋𝑥𝑢: 𝑃{𝑠𝑡𝑎𝑡𝑒 = 𝑥, 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑢}

𝝂𝒚|𝒙,𝒖: Rate in to state 𝑥 from state 𝑦 under decision 𝑢 ∈ 𝕌(𝑦)

𝜈𝑥|𝑦,𝑢 =

𝑢1𝜇1 𝑖𝑓 𝑦 = 𝑥 − 𝑒1

𝑢𝑖𝜇𝑖 𝑖𝑓 𝑦 = 𝑥 − 𝑒𝑖−1 + 𝑒𝑖 , 𝑖 ∈ 2, … ,𝑁
𝜆 𝑖𝑓 𝑦 = 𝑥 + 𝑒𝑁
0 𝑒𝑙𝑠𝑒



Instances Solved via LP
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3-hour time limit , 128GB of RAM, 2.67 GHz processor
Using CPLEX solver

Buffer Capacity (𝑀)
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Size of the LP

𝑀𝑁 + 1 constraints

𝑀𝑁 . 2𝑁 decision variables
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More decisions, more variables

Column generation refers to linear programming (LP) algorithms 
designed to solve problems in which there are a huge number of 
variables compared to the number of constraints

N=5, M=10
100K constraints
More than 3M variables



Column Generation (CG)

Initialization: Construct a feasible Master LP (original LP with restricted
DS) with its columns.

Repeat:
1. Solve Master LP. Obtain dual variable values. 

2. Among the columns with negative reduced costs, identify the one with the
least cost. (called Subproblem)

3. Add the column to Master LP

Until no column with negative reduced cost left
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Coefficient vector for state action pair



Master Problem

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 σ𝑥∈𝕊σ𝑢∈𝕌′(𝑥)𝐶𝑥𝑢𝜋𝑥𝑢

subject to

σ𝑢∈𝕌′(𝑥)𝜋𝑥𝑢 σ𝑦∈𝕊 𝜈𝑦|𝑥,𝑢 − σ𝑦∈𝕊σ𝑢∈𝕌′(𝑦) 𝜈𝑥|𝑦,𝑢𝜋𝑦𝑢 = 0 , ∀𝑥 ∈ 𝕊

σ𝑥∈𝕊σ𝑢∈𝕌′(𝑥)𝜋𝑥𝑢 = 1

𝜋𝑥𝑢 ≥ 0 , ∀𝑢 ∈ 𝕌′(𝑥), ∀𝑥 ∈ 𝕊

Initially : 𝕌′ 𝑥 = 1, ∀𝑥 ∈ 𝕊, a feasible deterministic policy. 

As algorithm proceeds, this set enlarges. (max. size of original LP)
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Column Generation (CG)

CG Algorithm in general:

Start with initial columns 𝐴 of Master LP (restricted)

Repeat:
1. Solve Master LP. Obtain dual variable values. 

2. Among the columns with negative reduced costs, identify the one with the
least cost. (Subproblem)

3. Add the column to Master LP

Until no column with negative reduced cost left
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Subproblem

min
𝑥,𝑢

(𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐶𝑜𝑠𝑡(𝑥, 𝑢))

where

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐶𝑜𝑠𝑡 𝑥, 𝑢 = 𝐶𝑥𝑢 − 𝑔 + σ𝑦∈𝕊 𝜈𝑦|𝑥,𝑢 ℎ𝑦 − σ𝑥∈𝕊 𝜈𝑥|𝑦,𝑢ℎ𝑥

Dual Problem:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑔

subject to

𝑔 + σ𝑦∈𝕊 𝜈𝑦|𝑥,𝑢 ℎ𝑦 − σ𝑥∈𝕊 𝜈𝑥|𝑦,𝑢ℎ𝑥 ≥ 𝐶𝑥𝑢, ∀𝑢 ∈ 𝕌(𝑥), ∀𝑥 ∈ 𝕊

𝑔 and ℎ𝑖 are unrestricted in sign.
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Different CG Rules 

Generally in CG, at each step:

Master Problem -> Subproblem is solved to obtain the column to be 
inserted

And at each step only one variable (with the most negative reduced 
cost) is inserted. 

These properties may result as high number of steps (insertion of only 
one variable at a time) and large computation times (our subproblem is 
an IP).
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How to improve?

Observation:

Objective function of the Master Problem is not changed even the 
column with most negative reduced cost inserted. (degenerate steps)

Mostly occur when inserted variable is away from current recurrent 
region.

Example: M/M/1 : Optimal threshold level 5.

Initial policy: with threshold level 3
◦ Inserted state-action belongs to level 6 or higher

Therefore, this step does not affect Master’s objective but included to 
the basis with value zero. Results as redundant steps.

SMMSO2017 20



All Neighbors Rule

insert best columns that correspond to 

neighbor states 

to the states with positive steady state probabilities in the 
current iteration.
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Instances Solved 
via LP 
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3-hour time limit , 128GB of RAM, 2.67 GHz processor

Buffer Capacity
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Instances Solved 
via All Neighbors Rule
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3-hour time limit , 128GB of RAM, 2.67 GHz processor
Initial policy: Never Produce

Buffer Capacity
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Run Time Comparison

# of stations buffer size LP
CG with All Neighbor Rule

optimal %5 %10 %20

4

10 24 79 7 4 2
12 35 4 2 1 1
14 270 58 8 4 2
16 530 70 12 7 3
18 4344 206 38 22 14
20 47 28 7 5 5

5

10 140 28 11 6 4
12 24370 433 93 46 19
14 - 324 77 39 28
16 - 1241 337 168 168
18 - 830 185 123 95
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Conclusion

• LP has several advantages comparing to iterative methods, 
BUT as the problem gets bigger it cannot handle.

• Column Generation brings extra advantages on top of LP 
(run time reduction, extended solvable region)

• Column Generation is a promising algorithm for MDPs
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Future Potential

-There are still many things to do
- Better search algortihms/efficient subproblem formulation

-Proposed rule/algorithm can be applied to any MDP. 
Problem specific properties and structures can also be used.

-It is a flexible approach: can be modified and improved by
using the characteristics of the problem
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