

Review of models for large scale manufacturing Networks

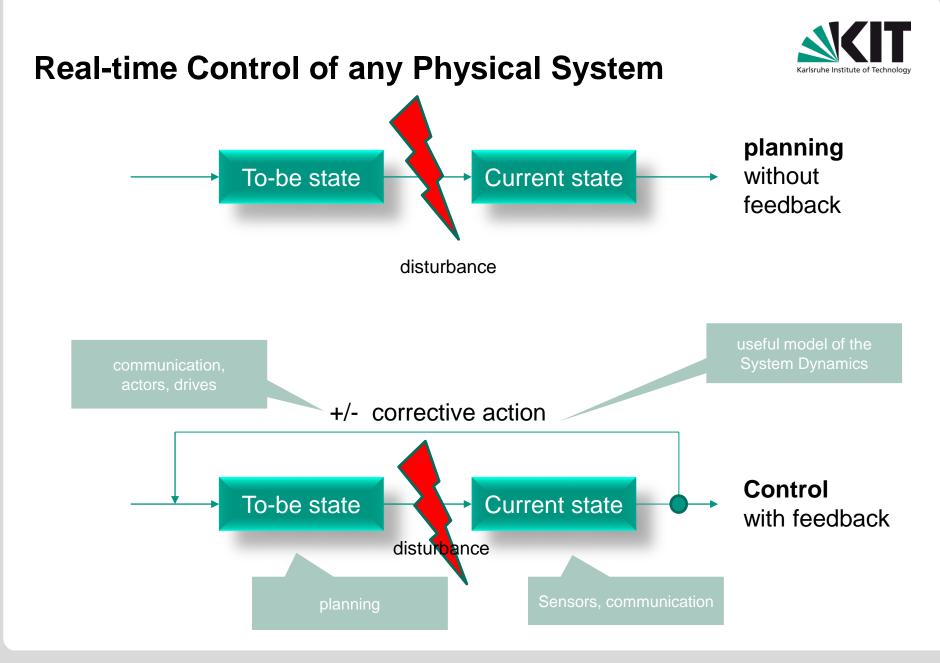
Kai Furmans – George Liberopoulos [[]→] – Marion Rimmele – Olaf Zimmermann SMMSO 2017

Institute for Material Handling and Logistics (IFL), KIT, University of Thessaly (Pu)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline Presentation

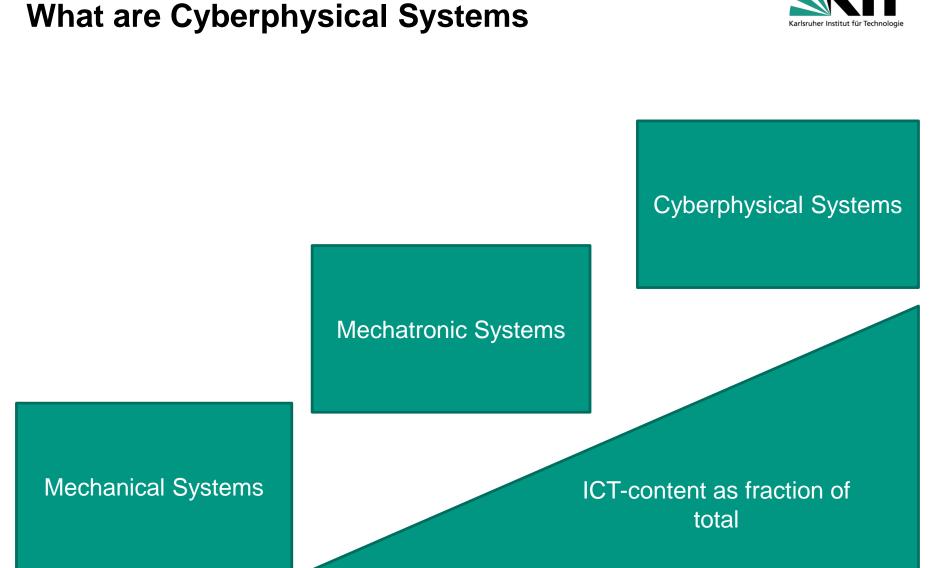


- The Research Idea
 - **Controlling Supply Networks as Cyber-physical Systems**
 - Cyber-Physical Systems Definition and an Example
- The Research Project Productive4.0
 - Positioning of the Project
 - Scope of the project
 - Project Structure
- The Methods and Tools of WP4 & WP5 of Productive4.0
- Literature Review
- Conclusion

© Institute for Material Handling and Logistics, 2017

Differences between Factories and Airplanes

- Control model available
- Continuous state, continuous corrective actions
- High frequency of small corrections
- Most planes inherently stable, stability a key factor
- <u>One</u> model



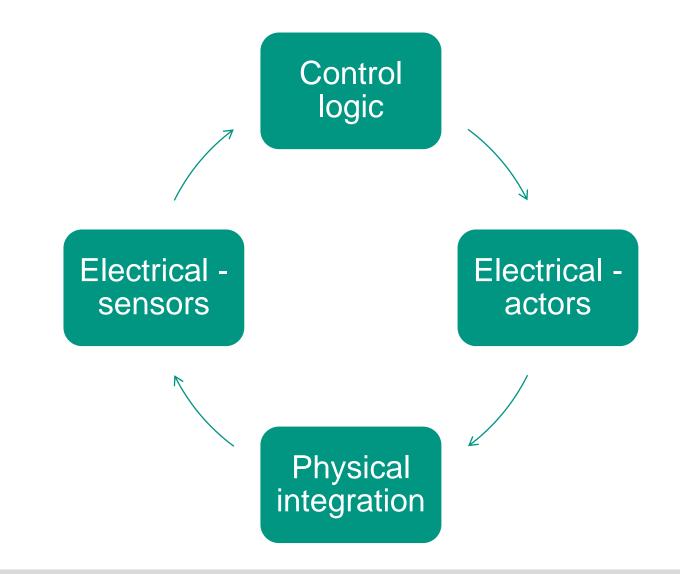
- Control model missing
- discrete state, discrete corrective actions
- No defined frequency of corrective actions, control frequency rather low
- Stability issues not known
- Multi-level model (if at all)

Aerial view of the Bosch semiconductor plants Reutlingen (kka-online.de)

Cyberphysical Systems: Background

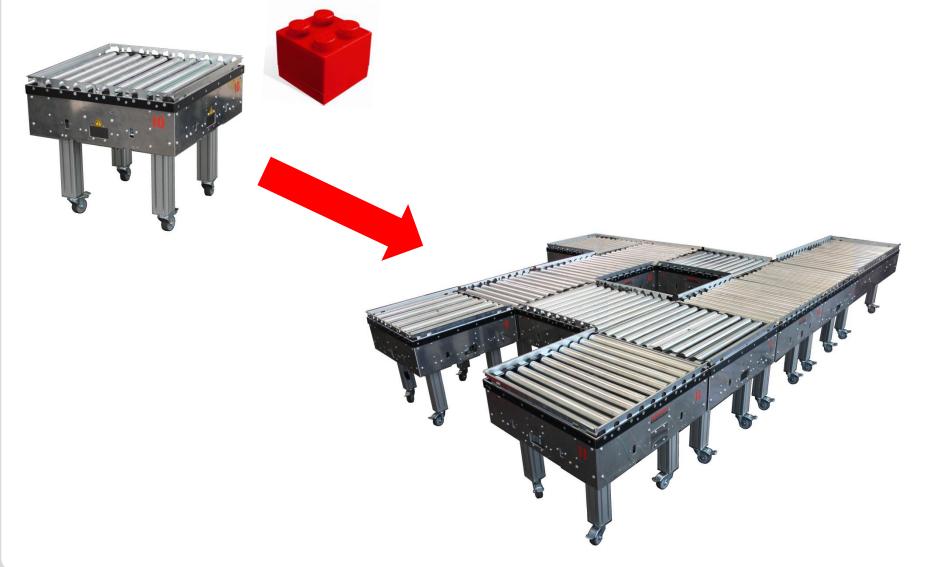
- Initiative of National Science Foundation (USA) 2006
- **Cyber**: computer based, digital control and communication
- Physisch: artificial or natural systems, underlying the laws of physics and working in continuous real time
- Cyberphysical System: autonomous control of physical systems based on digital, autonomous "comprehension" of the system and it's environment

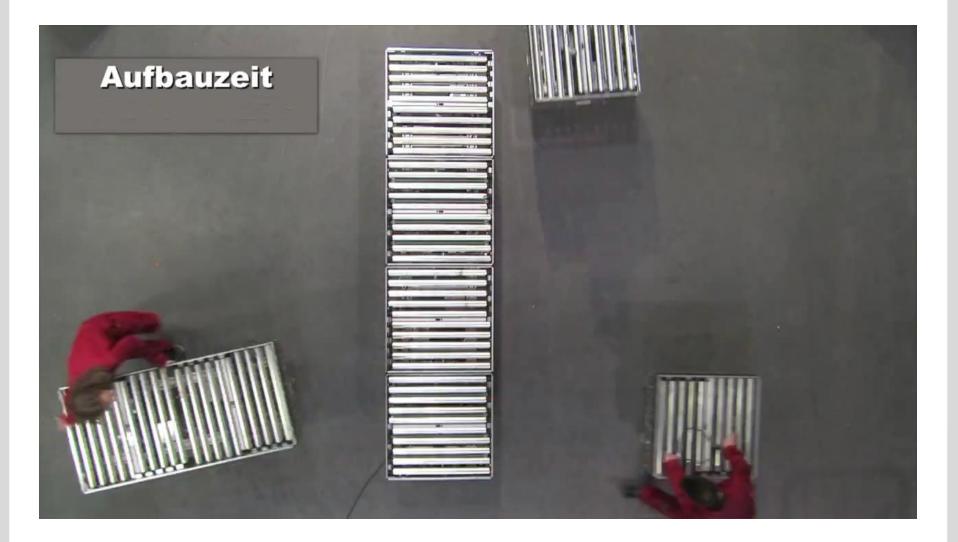
Why do we need CPS?



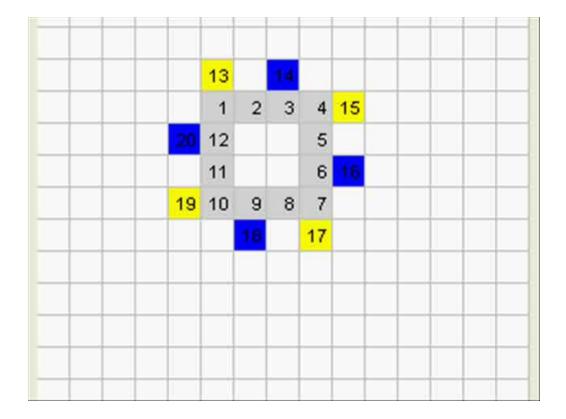
• A simple example from Material Handling

Reconfiguration of todays material handling systems needs changes in several levels



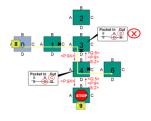

FlexConveyor

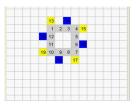
Flexconveyor – Assembly and Modification



Emerging Behaviour

GridStore




Characteristics Flexconveyor as a CPS

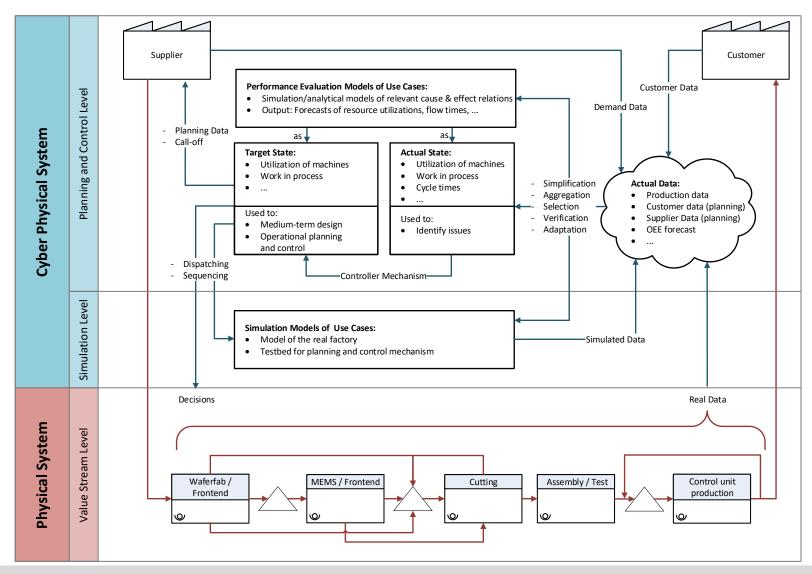
• Cyber:

- Local Control can get enough information which is necessary to "understand" the state of the system and its environment
- Clear control system "to be state" clearly defined, "is-state" clearly defined
- There is always an action to get the system closer to it's to be state
- Can make all necessary decisions
- Physical:
 - System is able to move real stuff
 - Is able to execute all the decisions
 - Provides cyber-part with sufficient feed back of real situation

Outline Presentation

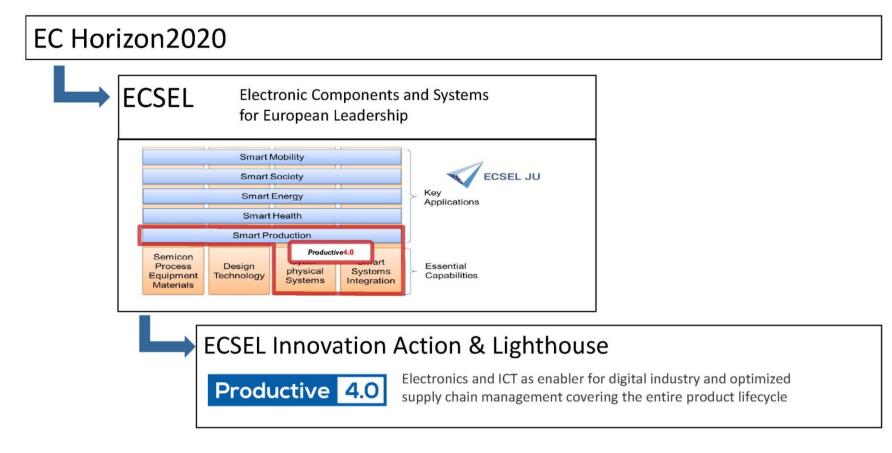
- The Research Idea
 - Controlling Supply Networks as Cyber-physical Systems
 - Cyber-Physical Systems Definition and an example

The Research Project *Productive***4**.0


- Positioning of the Project
- Scope of the project
- Project Structure
- The Methods and Tools of WP4 & WP5 of Productive4.0
- Literature Review

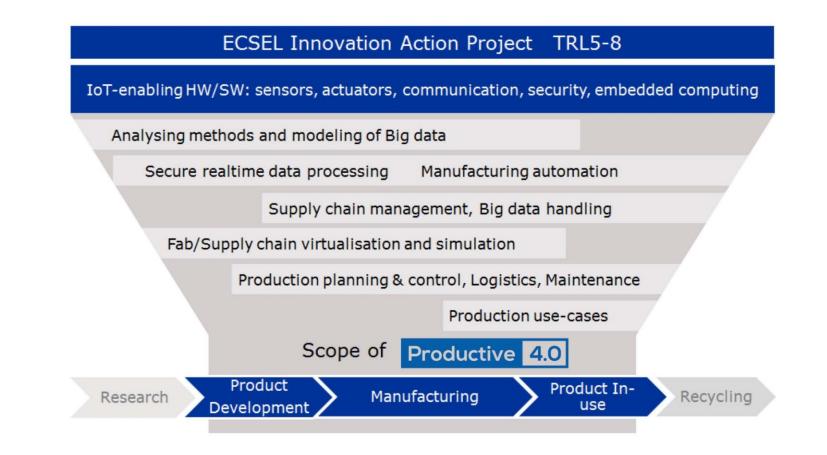
Conclusion

The Research Idea: Semiconductor Production Systems as Cyber Physical Systems

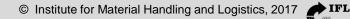


The Research Project Productive4.0

Positioning of the Project



The Research Project Productive4.0



Scope of the project

Productive 4.0

ECSEL JU

Mr Achitectures & Concepts ould Wanagement Production Control Components lor WP8 3 Automation& WP Digitisation **Product Use Cases** WP9 Environment lot Productive A. OFrance of WR exploitation pator Standardisation

process Virtualisation

ECSEL JU

The Research Project *Productive*4.0

Project Structure

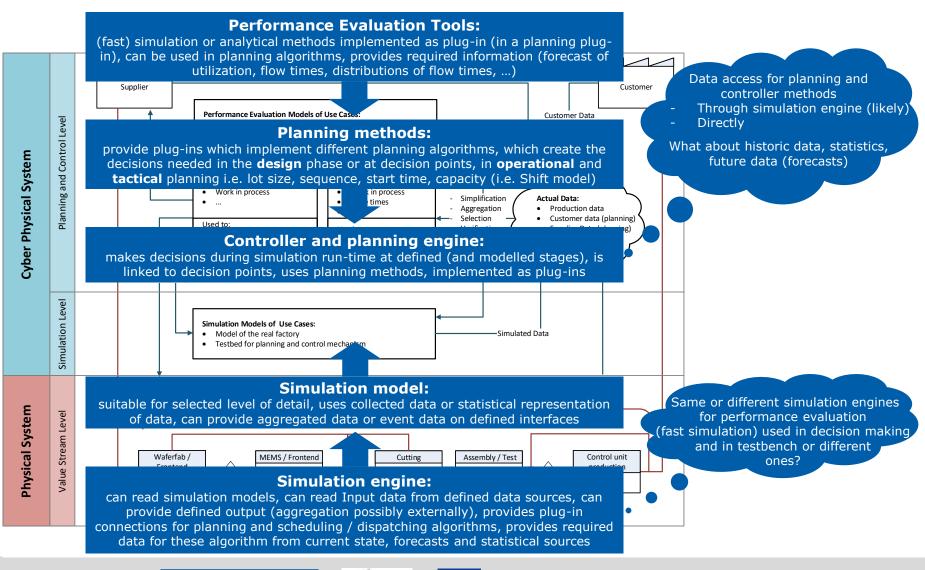
- Work Package 4 Develop a virtual simulation framework for modelling complex manufacturing systems and supply chains
- Work Package 5 **Develop Methods for Design** Planning and Control of manufacturing systems and the supply network

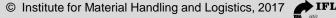
Productive 4.0

Dissemination

Outline Presentation

- The Research Idea
 - Controlling Supply Networks as Cyber-physical Systems
 - Cyber-Physical Systems Definition and an example
- The Research Project Productive4.0
 - Positioning of the Project
 - Scope of the project
 - Project Structure
- The Methods and Tools of WP4 & WP5 of Productive_{4.0}
- Literature Review
- Conclusion




The Methods and Tools of WP4 & WP5 of *Productive***4**.0

ECSEL JU

Productive 4.0

Outline Presentation

- The Research Idea
 - Controlling Supply Networks as Cyber-physical Systems
 - Cyber-Physical Systems Definition and an example
- The Research Project Productive4.0
 - Positioning of the Project
 - Scope of the project
 - Project Structure
- The Methods and Tools of WP4 & WP5 of *Productive*4.0

Literature Review

Conclusion

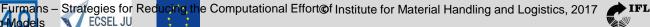
Literature Review - Characteristics of modelling a large scale manufacturing networks

		Model		Considered Characteristics								
Reference	Target	Туре	Time	Reentrance	Blocking	Arrival Process	Service Process	Multi-Server	Service Disciplines	Batches	Downtimes	Result
Morrison and Martin (2007) Kim and Morrison (2011)	D	Queuing station	AC			G	G	х	FCFS		x	Cycle Time
Ding et. al (2007)	D	Markov chain model	AC			М	Μ	х	GEO	х	х	Cycle Time
Akhavan-Tabaaetabi et al. (2012)	D	State-dependent Markov chain model	AC			G	G	x	FCFS		x	Work-in-Process Cycle Time
Grosbard et al. (2013)	D	Open queuing network	AC	x		G	G	x	FCFS	х	x	Cycle Time Waiting Time
Sagron et al. (2015)	D	Open queuing network	AC			G	G		FCFS TP		x	Waiting Time
Scholl and Domaschke (2000)	D	Discrete event simulation	S	х	х	G	G	х	ESD		x	Cycle Time
Sivakumar and Chong (2001)	D	Discrete event simulation	S	х	х	G	G	х	ESD		x	Cycle Time
Pearn et al. (2009)	D	Fitted Gamma distribution	AC			-	-		-			Waiting Time Cycle Time
Tai et al. (2012)	D	Fitted Weibull distribution	AC			-	-		-			Waiting Time Cycle Time
Akhavan-Tabatabaei et al. (2009)	D	Flow Analysis Model	AC			-	-		-		x	Work-in-Process Cycle Time

Target: D – Design

Time: AC - Analytical Continuous, S - Simulation

ECSEL JU


Literature Review - Characteristics of modelling a large scale manufacturing networks

		Model			Cor	nsid	ered	Char	acteris	tics		
Reference	Target	Туре	Time	Reentrance	Blocking	Arrival Process	Service Process	Multi-Server	Service Disciplines	Batches	Downtimes	Result
Veeger et al. (2010a, 2010b)	D	EPT-based aggregate simulation model	AC			G	G	x	FCFS		x	Cycle Time
Veeger et al. (2011)	D	EPT-based aggregate simulation model	S			G	G		FCFS LCFS		x	Cycle Time
Can and Heavey (2017)	D	EPT-based discrete event simulation	S		x	М	Μ	х	FCFS		x	Cycle Time
Yang et al. (2011)	D	Simulation-based metamodeling	S			-	-	х	TP			Cycle Time
Yang (2010)	D	Neural network metamodeling	S			-	-	х	TP			Cycle Time
Hsieh et al. (2014)	D	Progressive simulation metamodeling	S			-	-		TP	x		Cycle Time
Schelasin (2011, 2013)	D	Static capacity model Queueing station	AC			G	G	х	FCFS		x	Waiting Time Cycle Time
Zisgen and Meents (2008) Brown et al. (2010)	D	Open queuing network	AC	x		G	G	x	FCFS	х	x	Cycle Time Queue Lengths
Zarifoglu et al (2013)	0	Queueing Model	AC			G	G		FCFS	x		Optimal Lot Size
Chang (2017)	0	Simulation	AC	х		G	G	х	TP	х		Optimal Product Mix

Target: D - Design, O - Optimisation Time: AC - Analytical Continuous, S - Simulation

ECSEL JU

Literature Review - Characteristics of modelling a large scale manufacturing networks

		Model		Considered Characteristics								
Reference	Target	Туре	Time	Reentrance	Blocking	Arrival Process	Service Process	Multi-Server	Service Disciplines	Batches	Downtimes	Result
Wang and Wang (2007)	0	Simulation	S	x		G	D	x	FCFS	x		Optimal Lot Size
Akhavan-Tabatabaei et al. (2011)	0	Simulation	S	x		М	М		FCFS		x	Optimal Lot Release
Fowler et al. (2002)	0	Queueing Station	AC			G	G	x	FCFS	x		Optimal Batch Size
Kuo et al. (2011)	0	Neural Network	AC			G	G	x	FCFS	x	x	Reduce Cycle Time
Li et al. (2010)	0	Queueing Network	AC		x	М	М		FCFS		x	Optimal WIP level
Wang et al. (2013)	0	Neural Network	AC			G	G		OPT			Optimize Service Discipline
Chien et al. (2012)	0	Neural Network	AC			-	-		-			Reduce Cycle Time
Yao et al. (2004)	0	Modelling Framework	AC			-	-		-		x	Maintenance Scheduling
Ramirez-Hernandez et al. (2010)	0	Simulation	AC			-	-		-		x	Maintenance Scheduling
Kalir(2013)	0	Queueing Station	AC			G	G	x	FCFS		x	Optimize FM Splitting

Target: O - Optimisation

Time: AC - Analytical Continuous, S - Simulation

26 12.06.2017

Furmans – Strategies for Reducing the Computational Effort@f Institute for Material Handling and Logistics, 2017

Outline Presentation

- The Research Idea
 - Controlling Supply Networks as Cyber-physical Systems
 - Cyber-Physical Systems Definition and an example
- The Research Project Productive4.0
 - Positioning of the Project
 - Scope of the project
 - Project Structure
- The Methods and Tools of WP4 & WP5 of *Productive*4.0
- Literature Review

Conclusion

Conclusion and future research

- Usage of simulation and analytical models for the purpose of performance evaluation and especially cycle time estimation has been documented several times.
- Focus was usually set on an average cycle time, not on a percentile of the cycle time distribution.
- Dispatching and sequencing rules have also been studied, however, the impact on guaranteed performance figures is still open.
- Neural networks seem to be useful, when some data points for the system are available and the gaps between these data points have to be filled.
- Hybrid methods make use of the higher computing power available today, using combined knowledge from several sources.

Integration of data collection, planning algorithms and performance prediction of guaranteed cycle times with a high probability is an open task.

WP4 & 5 Process Virtualisation + Production Control 1. Overview

Partners

- INFINEON TECHNOLOGIES AG
- Robert Bosch Gesellschaft mit beschränkter Haftung
- SAP SE
- SIMPLAN AG
- FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
- FORTISS GMBH
- KARLSRUHER INSTITUT FUER TECHNOLOGIE
- UNIVERSITAET MANNHEIM
- UNIVERSITAET ZU KOELN
- AVL LIST GMBH
- INFINEON TECHNOLOGIES AUSTRIA AG
- UNIVERSITAET KLAGENFURT
- COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES **AI TERNATIVES**
- ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE
- STMICROELECTRONICS CROLLES 2 SAS
- APPLIED MATERIALS BELGIUM
- DANOBAT
- Savvy Data Systems S.L.
- ENGINE POWER COMPONENTS GROUP EUROPE SL

- TRIMEK SA
- **ULMA EMBEDDED SOLUTIONS S COOP**
- **IDEKO S COOP**
- ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA •
- MONDRAGON SISTEMAS DE INFORMACION
- MONDRAGON ASSEMBLY S.COOP
- PANEPISTIMIO THESSALIAS •
- CENTRO DI PROGETTAZIONE, DESIGN & TECNOLOGIE DEI MATERIALI
- LEOUNDRY SRI ٠
- POLITECNICO DI MILANO
- Statwolf Ltd.
- UNIVERSITY OF LIMERICK
- Infineon Technologies Ireland Ltd
- Infineon Technologies Cegléd Kft.
- **UNGER FABRIKKER AS**
- PREDIKTOR AS •
- **TELLU AS** •
- HOGSKOLEN I OSTFOLD
- STIFTELSEN SINTEF
- KOC UNIVERSITY

\rightarrow WP4: 26 partners, 611 person months \rightarrow WP5: 39 partners, 1.256 person months

Next steps

- Productive 4.0 is an "innovation action", if we do want to do more research we need:
 - Either a "Research and Innovation Action" and/or a
 - Marie Skłodowska-Curie Action (or something similar)
- Find a way to include researchers from other continents (Amercia, Asia,....)

Acknowledgment

This research is supported by the ECSEL-joint undertaking under grant agreement no. 737459. This joint undertaking receives support from the EU-Horizon 2020 research and innovation program and national funding

Thank you for your attention!

ECSEL JU

Productive

	Karlsruher Institut für Technologie (KIT) Institut für Fördertechnik und Logistiksysteme (IFL)	Fuele Möschen
Postanschrift	Kaiserstr. 12	glaebach
	76131 Karlsruhe	ىكى
Besucheranschrift	Gotthard-Franz-Str. 8 Geb. 50.38	2.
	76131 Karlsruhe	Saarbrück
Telefon	+49 (721) 608-48600	
Telefax	+49 (721) 608-48609	
eMail	info@ifl.uni-karlsruhe.de	
www	http://www.ifl.uni-karlsruhe.de	

Özden, Epp, Stoll and Furmans – Strategies for Reducing the Computational Effort@f Institute for Material Handling and Logistics, 2017

