The Impact of Orbit Dependent Return Rate on the Control Policies of a Hybrid Production System

Aybek Korugan¹ Seval Ata¹ Murat Fadıloğlu²

¹ Boğaziçi University, ² American University of the Middle East

Production Control and Return Flows

Objective: Production control under uncertain return flows.

- Returns may affect inventory levels.
- Return flow estimates are required.
- Returns and supplied demand are dependent through products in use

Production Control with Return Flows

- Literature assumes demand and return flows to be independent in most cases.
- Demand generates new users when the sales is not for replacement.
- So The more new products are sold to new users the higher the number of products in use (in orbit).
- ∞ The size of the orbit determines the return rate.
- So When some of the products in orbit are disposed off rather than being returned an unobservable decrease occurs in the products in use.
- ⁵⁰ The return rate only gives a partial information about this fact.

Literature on Optimal Control Models

How would the information about orbit affect the production system control?

- 50 Toktay et. *al* (2000)
 - $\circ~$ CLSC model using QN with ./M/ ∞ queue representing users
- impose Flapper et. al (2012)
 - Optimal production control with advanced return info.
- imilia Zerhouni et. al (2013)
 - Comparison of dependent vs. independent returns under base stock control.
 - Continuous review base stock optimal for independent returns
 - Instantaneous usage rate assumption for dependent returns

Objectives of the Study

- Mow does the production decision change under return flows dependent on the size of the orbit?
- So What is the value added of using return flows in manufacturing?
- So What is the cost of ignoring/inaccurately estimating the information of orbit size?

The Model

 λ :Demand rate μ :Usage rate γ :Disposal rate θ :Production rate $p = \mu/(\gamma + \mu)$ x_0 :Orbit size x_I :Inv. level

Assumptions

- Each product in orbit can be disposed of with a positive probability.
- No need for remanufacturing (or instant remanufacturing to as good as new).
- All returns are accepted.
- The system is continuously observed.
- x_O is fully observable.

Value Function

Optimal Production Control w. Returns

 $\theta = 1, \lambda = 1.2, \gamma = 0.002, \mu = 0.018, (p = 0.9)$

40	000000000000000000000000000000000000000
39	000000000000000000000000000000000000000
38	000000000000000000000000000000000000000
37	000000000000000000000000000000000000000
36	000000000000000000000000000000000000000
35	000000000000000000000000000000000000000
34	000000000000000000000000000000000000000
33	000000000000000000000000000000000000000
32	000000000000000000000000000000000000000
31	000000000000000000000000000000000000000
30	000000000000000000000000000000000000000
29	000000000000000000000000000000000000000
28	000000000000000000000000000000000000000
27	000000000000000000000000000000000000000
26	000000000000000000000000000000000000000
25	000000000000000000000000000000000000000
24	000000000000000000000000000000000000000
23	000000000000000000000000000000000000000
22	000000000000000000000000000000000000000
21	000000000000000000000000000000000000000
20	000000000000000000000000000000000000000
19	000000000000000000000000000000000000000
18	000000000000000000000000000000000000000
17	000000000000000000000000000000000000000
16	000000000000000000000000000000000000000
15	000000000000000000000000000000000000000
14	000000000000000000000000000000000000000
13	600000000000000000000000000000000000000
12	600000000000000000000000000000000000000
11	
10	
9	111000000000000000000000000000000000000
8	
/	
6	
5	
4	
3	
2	
T	
0	111111111111111111111111111111111111111

$$c_L/h = 50, S_{max} = 9,$$

^^^^

 $c_{I}/h = 10, S_{max} = 3,$

A Basis for Comparison

- Zerhouni et. *al* (2013) show for a state independent stationary return flow the optimal control policy is base stock.
- State independent return rate estimates are needed.
- An estimate can be given as $\hat{\mu} = \alpha \cdot \overline{\mu}, \alpha \in [0,\infty)$ where $\overline{\mu} = E[x_0] \cdot \mu$.
- Thus the average orbit size is required.

LP Model

⁵⁰ The LP equivalent of the value function calculates the stationary distribution $P(x_I, x_0)$ (Büyükdağlı and Fadıloğlu, 2016).

$$\min Z = \sum_{x \in S} \left(c_{x,0} \cdot y_{x,0} + c_{x,1} \cdot y_{x,1} \right)$$

st.

$$\begin{split} \sum_{x \in S} (y_{x,0} + y_{x,1}) &= 1 \\ y_{x,0} + y_{x,1} - \Lambda^{-1} \left\{ \theta \left(y_{x,0} + y_{x-e_{I},1} \right) + \lambda \left(y_{x-e_{0}+e_{I},0} + y_{x-e_{0}+e_{I},1} \right) \right. \\ &+ x_{0} \mu \left(y_{x+e_{0}-e_{I},0} + y_{x+e_{0}-e_{I},1} \right) + x_{0} \gamma \left(y_{x-e_{I},0} + y_{x-e_{I},1} \right) \\ &+ \left(M - x_{0} \right) \left(\gamma + \mu \right) \left(y_{x,0} + y_{x,1} \right) \right\} = 0 \\ \forall y_{x,0} \ge 0, y_{x,1} \ge 0 \\ \forall x \in S \\ x = \left(x_{0}, x_{I} \right), e_{0} = (1,0), e_{I} = (0,1) \\ c_{x,d} = h \cdot x_{I} + \left(1 - x_{I} \right)^{+} \cdot \lambda \cdot c_{L}, d = \left\{ 0,1 \right\} \end{split}$$

The Procedure

$$\hat{\mu} = \alpha \cdot E[x_0] \cdot \mu \text{ from LP}$$

$$S_{\hat{\mu}} \text{ from } v(x_I)$$

$$S_{\hat{\mu}} \text{ to } v(x) = v_{S_{\hat{\mu}}}(x)$$

$$Compare v(x) \& v_{S_{\hat{\mu}}}(x)$$

 $v(x_I)$ is the value function for optimizing the FGI without using the orbit information. $S_{\hat{\mu}}$ is the optimal base-stock level for $v(x_I)$.

Decision Matrix from Value Iteration

$$\lambda = 1, \theta = 1, \mu/\gamma = 1, c_L/h = 50$$

13

Stationary Distribution from LP

Marginal Probability of Inventory Level

Marginal Probability of Orbit Size

Pure vs. Hybrid Production

For $\alpha = 0$ we can observe the added value of using returns. If no returns are accepted S_{max} is the optimal control policy.

$$\theta = 1, \lambda = \{0.8, 1, 1.2\}, \ p = \mu/(\mu + \gamma) = \{0.1, 0.3, 0.5, 0.7, 0.9\}, \\ \mu = \{0.002, \dots, 0.018\}, c_L/h = \{10, 50\}, h = 1$$

Pure vs. Hybrid Production

- The impact of p and λ/θ
- As λ/θ increases the impact of returns increase since the orbit expands. For p=0.9 and $\lambda = 1.2, \overline{\mu} = 1.047$

Value of Orbit State

 $c_1/h=50$, demand rate=0.8

Remanufacturing vs Manufacturing Cost

Control levels for $\overline{\mu}$ model under the impact of production costs.

	$\lambda = 0.8$		$\lambda = 0.8$		$\lambda = 0.8$	
р	S with C _R C _{M-}	S	S with C _R C _{M-}	S	S with C _R C _{M-}	S
0.1	4	5	6	7	10	10
0.3	3	4	5	5	7	7
0.5	3	3	4	4	5	5
0.7	2	2	3	3	3	4
0.9	1	1	1	1	2	2

$$\theta = 1, c_L / h = 50, c_M = 5, c_R = 2$$

Conclusions

- A testbed for measuring the impact of the number of products in use (orbit) on the production control of hybrid production systems is introduced.
- The added value of using returns for supplying the demand is clearly displayed.
- Results indicate that the base stock policy is heavily dependent on the orbit size and return probabilities.
- The difference between complete information and no information present the value of the partial observation effort.

Future Work

Model structure extensions:

- Return admission control
- Remanufacturing lead time
- Demand differentiation
- The feedback relation between the orbit and the demand rate.

Testbed extensions:

- Automated LP model
- LP model for upto S levels
- Measure the effectiveness of proposed methods so far

Thank You

References:

THE LUTLE

Toktay et. al (2000), Inventory Management Of Remanufacturable Products, Mgt. Sci., 46.

Flapper et. *al* (2012), Control Of A Production-inventory System With Returns Under Imperfect Advance Return Information, EJOR, 218.

Zerhouni et. al (2013), Influence Of Dependency Between Demands And Returns In A Reverse Logistics System, IJPE 143.

Büyükdağlı and Fadıloğlu (2016) A Mathematical Programming Framework for Control of Tandem Production Lines, Research Report.

Distributions of the given example.

$$\theta = 1, \lambda = 1.2, \gamma = 0.002, \mu = 0.018, (p = 0.9), c_L/h = 50$$

$$E[x_I] = 6,195$$

$$\overline{\mu} = 1,047, E[x_0] = 58$$

 $P(x_I, x_0)$