

A Stochastic Dynamic Programming Approach for Assigning Inventories in Multi-Channel Retailing

Andreas Holzapfel, Heinrich Kuhn, Alexander Hübner

11th Conference on Stochastic Models of Manufacturing and Service Operations (SMMSO 2017)

Lecce, June 7, 2017

Catholic University of Eichstätt-Ingolstadt Department of Operations Auf der Schanz 49 85049 Ingolstadt, Germany

Agenda

1. Motivation and omni-channel retailing

- 2. Omni-channel inventory allocation problem
- 3. Model development
- 4. Results
- 5. Summary and future area of research

Motivation and problem description

Omni-channel retailers serve customer with on- and offline channels

Example

Bricks-and-mortar store

Online store

Buy online pick up instore and buy instore and get home delivery

Motivation and objectives

Already 55% of top retailers operate in multi-channel business

100%

Percent, 2013, Germany

Multi-channel (on- & offline) Single-channel

Fashion 68% 32% N=60 & Footwear 40% DIY 60% N=10 Consumer 80% 20% N=5 **Electronics** 30% 70% Grocery N=30 **Top Retailers** 55% 44% N=105

Share of top retailers with multi-channel business

- 55% of top retailers offer multi-channel
- Adaption of business models necessary
- Logistics as a key component of multi-channel strategies

Source: Kuhn/Hübner/Holzapfel (2013)

Multi-channel planning areas

Seven logistics planning areas have been identified by means of qualitative interviews with >30 retailers

Planning areas in multi-channel retailing

Planning areas identified through face-to-face interviews with retailer managers

Source: Hübner/Holzapfel/Kuhn (2014)

Agenda

1. Motivation and omni-channel retailing

2. Omni-channel inventory allocation problem

- 3. Model development
- 4. Results
- 5. Summary and future area of research

Motivation and problem description Allocation of inventories to different distribution channels is a central challenge in omni-channel retailing

Motivation

- Adequate allocation of inventories is important to prevent shortages in one channel while there is a surplus in the other channel
- Inventories in omni-channel retailing: Each store is an individual warehouse, the online shop is an additional "large store" with an aligned warehouse

Motivation and problem description

We apply our model to omni-channel retailers that sell seasonal products and operate a central warehouse and multiple stores

• Product characteristics and examples

- Seasonal products with a main season and discounted sales afterwards
- Fashion products, promotional items, etc.
- Network structure of omni-channel retailers
 - One DC for bricks-and-mortar and distance channel
 - Own branch network
- Typical sourcing and purchasing policy
 - Order placement 6 to 12 month in advance of the selling season (e.g. in Far East)
 - All distributable **products arrive** at the central warehouse at the beginning of the selling season
 - No reorders possible during the selling season

Research project with a fashion retailer of the Otto Group, Germany

The phases of the selling season determine the structure of the decision problem and the decision alternatives

Timeline	5		After se	eason	→ Time	
				••		nd of selling eason
Pricing		Original sale	es price	Discount	price	Salvage price
Inventory decisions	Initial stocking of stores	Restocking of stores	Reallocation of inventory- Restocking of stores- Returning to DC- Transshipments between stores		tores	
Discount decisions		Selection of disc		of discount leve	t level	
	<u></u>					

Literature

Literature on inventory allocation is not tailored to omni-channel problems, based on actual process costs and decision problems in this context

Literature	Contribution
Common literature about inventory allocation	 Omni-channel retailing as area of application
 Relevant recent paper: Alptekinoglu, Tang (2005): A model for	Practice-oriented analysis of processes
analyzing multi-channel distribution	and costs which influence the allocation
systems	decision
 Agrawal, Smith (2013): Two-stage	 Integrative treatment and modeling of
allocation of inventories to stores with	different allocation alternatives and
different demand patterns	pricing

Costs and influencing factors The inventory allocation and discounting decisions cause different channel-specific (process) costs

Cost factor

Description

Costs for initial stocking and restocking of stores and shipment of customer orders

Influencing factors (selection)

- Picking and packaging system
- Mode of shipment

...

Costs and influencing factors The inventory allocation and discounting decisions cause different channel-specific (process) costs

Description

Costs for initial stocking and restocking of stores and shipment of customer orders

Costs for **customer return** handling and shipment

Influencing factors (selection)

- Picking and packaging system
- Mode of shipment

• ...

- Return quota
- Rework effort

• ...

Costs for **unsatisfied demand** and **prevention strategies** (like reallocation and transshipments)

Discounts and remnants

Cost factor

Reduction of **sales margin** and effort clearance

- Shipment
- Handling effort

• ...

- Level of discount
- Handling effort

• ...

Sources: Data case company, Hübner /Holzapfel/Kuhn (OMR, 2015)

SDP Approach for Assigning Inventories in MC Retailing

Costs and influencing factors Inventory allocation deals with the cost trade-off between savings in bulk shipments to stores and risk of stock-out costs

Agenda

- 1. Motivation and omni-channel retailing
- 2. Omni-channel inventory allocation problem
- 3. Model development
- 4. Results
- 5. Summary and future area of research

Modeling approach

A stochastic DP minimizes the process, out-of-stock and discount costs considering the various decision stages and both sales channels

Notation

Indices

- *l* locations
- r discount levels
- t periods

Parameter

- c allocation costs (DC to store, store to DC, transshipment between stores)
- *q* initial **inventory**
- π unit profit for each sales phase and price level

Random variables

D **Demand** at location for each sales phase and price level

Auxilliary variables

- A, B Start/end inventory at location
- Z Realized sales

Decision variables

- *x* Reallocation volume
- y **Discount level**

The decisions during the planning horizon can be represented as stochastic dynamic program

Inventory related decisions and auxiliary variables of the SDP

Modeling approach

A stochastic DP maximizes the total marginal profit considering the various decision stages and both sales channels

Objective function

$$\max! \operatorname{TP} =$$

$$\sum_{t=1}^{\tau} \sum_{l=0}^{L} \pi_{lt}^{sale} \cdot E[Z_{lt}]$$

$$+ \sum_{t=\tau+1}^{T} \sum_{l=0}^{L} \sum_{r=1}^{R} \pi_{ltr}^{disc} \cdot E[Z_{lt}]$$

$$+ \sum_{l=0}^{L} \pi_{l}^{remn} \cdot E[A_{lT}]$$

$$- \sum_{l=0}^{L} \sum_{l=0, l\neq k}^{L} \sum_{t=1}^{T} c_{lk} \cdot x_{lkt}$$

 $\cdot y_r$

Realized profit from sales during main season

Realized profit from sales during **after-season** and for selected discount

Realized profit from **remnant sales** at the end of after-season

Total costs for **reallocation** of items between locations at the beginning of different periods

Modeling approach

A stochastic DP minimizes the process, out-of-stock and discount costs considering the various decision stages and both sales channels Constraints

 $l = 0.1, \dots, L; t = 1, \dots, \tau(3)$

Available inventory at the beginning of period

$$f_{B_{lt}} = A_{l,t-1} - \sum_{k=0,k\neq l} x_{lkt} + \sum_{l=0,l\neq k} x_{klt} \qquad l = 0,1,\dots,L; t = 1,2,\dots,T (2)$$

Sales volume in main season

 $Z_{lt} = min[D_{lt}; B_{lt}]$

R

Sales volume in after season

 $Z_{lt} = min[D_{ltr}; B_{lt}] \cdot y_r \qquad l = 0, 1, ..., L; t = \tau + 1, ..., T(4)$

Inventory level at the end of period t

 $A_{lt} = B_{lt} - Z_{lt} \qquad l = 0, 1, \dots, L; t = 1, 2, \dots, T (5)$

Discount scheme and variables definition

$$\sum_{r=1}^{N} y_r = 1$$

$$A_{lt} \in \mathbb{Z}_0^+; B_{lt} \in \mathbb{Z}_0^+; Z_{lt} \in \mathbb{Z}_0^+$$

$$l = 0, 1, ..., L; t = 1, 2, ..., T (7), (8), (9)$$

$$l, k = 0, 1, ..., L; t = 1, 2, ..., T (10)$$

$$y_r \in \{0, 1\}$$

$$r = 1, 2, ..., R (10)$$

SDP Approach for Assigning Inventories in MC Retailing

Agenda

- 1. Motivation and omni-channel retailing
- 2. Omni-channel inventory allocation problem
- 3. Model development

4. Results

5. Summary and future area of research

Results

The case study covers a data setting with one DC, 60 stores, different inventory levels and a broad set of cost constellations ...

Network

Initial inventory

Financials	Values tested [in currency units]				
Item price	14 (low)	28 (medium)	56 (high)		
Logistics costs					
Shipment costs to customers	2.8				
 Initial bulk stocking of stores 	0.01				
 Restocking of stores 	0.3				
Return from store to DC	1.0				
Transshipment between stores	1.2				
Lost sales costs					
in distance channel	stance channel margin – shipment costs to customers				
 in store channel 	margin – restocking costs of stores				
Discounts in discount phase {10%, 20%, 30%}			}		
Remnant costs after end of selling					
Remnant value for remnant item	S	50%			
Remnant cost distance channel	margin*rem.value+customer shipment costs				
Remnant cost store channel	margin*r	margin*rem.value+restocking costs of stores			

Results

... the numerical study covers a data setting with <u>multiple</u> demand constellations

Demand

Mean demand ratios	Values tested [ratios]			
Total demand as % of initial total stock at DC	50% (low)	100% (medium)	150% (high)	
Demand share of main season as % of total demand	50%			
Demand share of online channel as % of total demand	el 10%			
Demand elasticity				
Additional demand on discounts, as a factor of the discount	1.0			

Demand is assumed to be uniformly distributed with a spread of 40 in distance channel and 20 for each store and sales phase.

Different combinations of financials and demand data results in

9 different data sets

simulated 100 times each

Solution approach

We apply different solution approaches to the inventory allocation problem

Allocation volume determined by				Focus on following slides
	Integrated allo- cation problem (exact)	Two-phase allo- cation problem (AP-heuristics)	Demand ratio (DR-heuristics)	Lot-for-lot
	Application of OCIAP model	OCIAP applied to each phase with known demand distribution ¹	Proportional allocation based on expected mean demand	Replenishment after sales based on first-come-first serve logic
Frequency of decisions	Solutions only for two-store cases possible			
main after 2xbulk (2B)	2B-exact	2B-AP	2B-DR	
1xbulk (1B)	1B-exact	1B-AP	1B-DR	
continuous				Lot-for-Lot

1: first allocation includes demand for all phases, second allocation is only reallocation based on realized demand

SDP Approach for Assigning Inventories in MC Retailing

Total profit can be increased with efficient allocation methods Overview of case study results

Average profit change of 900 examples with varying demand and price ratios, Case company

Profit change vs. lot-for-lot policy

1 Optimal policy highly depends on the demand ratio and margins (1/2) Allocation with AP model vs. allocation by demand ratio

Average profit of 9x100 examples, Case company

-■- 2B-AP -■- 2B-DR

Benefits from bulk Limited Flexibility required allocations reallocations required Allocation to more 5.0 profitable channel 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 Demand low high hiah high low low med med med Margin low med high low med high low med high

Profit change of 2B-AP and 2B-DR vs. lot-for-lot policy

- Allocation with AP model results in higher profits than the demand-ratiobased allocation, and on average in higher
- Demand-ratio based allocation is worse than lot-for-lot
- For each demand scenario the magnitude decreases as share of reallocation costs decreases

Optimal policy highly depends on the demand ratio and margins (2/2) Two vs. one bulk allocation

Average profit of 9x100 examples, Case company

Profit change of 2B and 1B vs. lot-for-lot policy

-■- 2B-AP -■- 1B-AP

- 2B-AP outperforms in all cases 1B-AP
- Option to allocate a second bulk volume improves profit on average by 0.2 ppt.
- However, bulk allocation (regardless if 2B or 1B), is less efficient than lot-forlot with medium demand products

Solution approach

We extend the bulk allocation approach with a flexible buffer

	Allocation vo	lume determined b	Additional approach	
	Integrated allo- cation problem (exact)	Two-phase allo- cation problem (AP-heuristics)	Demand ratio (DR-heuristics)	Lot-for-lot
Frequency of decisions	Application of OCIAP model	OCIAP applied to each phase with known demand distribution	Proportional allocation based on expected mean demand	Replenishment after sales based on first-come-first serve logic
main after 2xbulk (2B) ● ▲	2B-exact	2B-AP	2B-DR	
1xbulk (1B)	1B-exact	1B-AP	1B-DR	
1xbulk plus flexible buffer	BF-exact	BF-AP	BF-AP	
continuous				Lot-for-Lot

Optimal policy highly depends on the demand ratio and prices Bulk allocation with vs. without puffer

Average profit of 9x100 examples, Case company

Profit change of BF-AP and 2B-AP vs. lot-for-lot policy

 2B-AP policy is only outperforming BF-AP for high demand products

 BF-AP policy is always better than lot-for-lot policy, but profit delta decreases with higher prices

Agenda

- 1. Motivation and omni-channel retailing
- 2. Omni-channel inventory allocation problem
- 3. Model development
- 4. Results
- 5. Summary and future area of research

Key learnings and managerial insights

Preliminary results based on case study

- 1. Introduction of **flexible puffers matters**!
- 2. Efficient allocation approach outperforms proportional allocation!
- 3. Bulk allocation improves logistics costs (two bulk allocations are better than one bulk and better than lot-for-lot replenishment)

However, **improvement potential depends** mainly on **demand levels**, **gross margin** and **logistics costs**

References

Hübner, A., Wollenburg, J. & A. Holzapfel (2016): **Retail logistics in the transition from multi-channel to omni-channel,** in: International Journal of Physical Distribution & Logistics Management

Hübner, A., Holzapfel, A. & H. Kuhn (2016): **Distribution systems in multi-channel retailing.** In: Business Research

Hübner, A., Wollenburg, J. & H. Kuhn (2016): Last mile fulfilment and distribution in omni-channel grocery retailing: A strategic planning framework, in: International Journal of Retailing and Distribution Management

Hübner, A., A. Holzapfel & H. Kuhn (2015): **Operations management in multi-channel retailing**, in: Operations Management Research

Wollenburg, J., Holzapfel, A., Hübner, A. & H. Kuhn (2016): **Configuring** retail fulfillment processes for omni-channel customer steering, Working Paper

Wollenburg, J., Hübner, A., Kuhn, H. & A. Trautrims (2016): From bricksand-mortar to bricks-and-clicks – an exploratory survey on network structures in omni-channel grocery retailing, Working paper

Holzapfel, A., Kuhn, H. & A. Hübner (2017): Inventory allocation in omni-channel fashion retailing, Working paper

Q&A Many thanks for your attention!

Catholic University of Eichstaett-Ingolstadt Department of Operations

Auf der Schanz 49 85049 Ingolstadt Tel. 0841 937 21823 www.multichannellogistik.net