

A Stochastic Dynamic Programming

Approach for Assigning Inventories in
Multi-Channel Retailing

Andreas Holzapfel, Heinrich Kuhn, Alexander Hübner

11th Conference on Stochastic Models of Manufacturing and Service Operations (SMMSO 2017)

Lecce, June 7, 2017
KATHOLISCHE
UNIVERSITÄT

EICHSTÄTT INGOLSTADT

Agenda

1. Motivation and omni-channel retailing
2. Omni-channel inventory allocation problem
3. Model development
4. Results
5. Summary and future area of research

Motivation and problem description

Omni-channel retailers serve customer with on- and offline channels

Example

Bricks-and-mortar store Online store

Buy online pick up instore and buy instore and get home delivery

Motivation and objectives

Already 55\% of top retailers operate in multi-channel business

Percent, 2013, Germany

Share of top retailers with multi-channel business

Source: Kuhn/Hübner/Holzapfel (2013)

Multi-channel planning areas

Seven logistics planning areas have been identified by means of qualitative interviews with >30 retailers

Planning areas in multi-channel retailing

Planning areas identified through face-to-face interviews with retailer managers

Agenda

1. Motivation and omni-channel retailing
2. Omni-channel inventory allocation problem
3. Model development
4. Results
5. Summary and future area of research

Motivation and problem description

Allocation of inventories to different distribution channels is a central challenge in omni-channel retailing

Motivation

Motivation and problem description

We apply our model to omni-channel retailers that sell seasonal products and operate a central warehouse and multiple stores

Application \& case study

- Product characteristics and examples
- Seasonal products with a main season and discounted sales afterwards
- Fashion products, promotional items, etc.
- Network structure of omni-channel retailers
- One DC for bricks-and-mortar and distance channel
- Own branch network
- Typical sourcing and purchasing policy
- Order placement 6 to 12 month in advance of the selling season (e.g. in Far East)
- All distributable products arrive at the central warehouse at the beginning of the selling season
- No reorders possible during the selling season

Research project with a fashion
retailer of the Otto Group, Germany

The phases of the selling season determine the structure

 of the decision problem and the decision alternatives| Timeline | Main season | | | After season | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Start of selling season | | | Start of discounts | selling
 n |
| Pricing | | Original sales price | | Discount price | Salvage price |
| Inventory decisions | Initial stocking of stores | Restocking of stores | Reall
 - Res
 - Ret
 - Tra | on of inventory
 ing of stores
 g to DC
 pments between stores | |
| Discount decisions | | | Sele | of discount level | |

Literature

Literature on inventory allocation is not tailored to omni-channel problems, based on actual process costs and decision problems in this context

Literature

- Common literature about inventory allocation

Relevant recent paper:

- Alptekinoglu, Tang (2005): A model for analyzing multi-channel distribution systems
- Agrawal, Smith (2013): Two-stage allocation of inventories to stores with different demand patterns

Contribution

- Omni-channel retailing as area of application
- Practice-oriented analysis of processes and costs which influence the allocation decision
- Integrative treatment and modeling of different allocation alternatives and pricing

Costs and influencing factors

The inventory allocation and discounting decisions cause different channel-specific (process) costs

Description
Costs for initial stocking and restocking of stores and shipment of customer orders

Influencing factors (selection)

- Picking and packaging system
- Mode of shipment
- ...

Costs and influencing factors

The inventory allocation and discounting decisions cause different channel-specific (process) costs

Cost factor

Description
Costs for initial stocking and restocking of stores and shipment of customer orders

Costs for customer return handling and shipment

Costs for unsatisfied demand and prevention strategies (like reallocation and transshipments)

Reduction of sales margin and effort clearance

Influencing factors (selection)

- Picking and packaging system
- Mode of shipment
- ...
- Return quota
- Rework effort
- ...
- Shipment
- Handling effort
- ...
- Level of discount
- Handling effort
- ...

Costs and influencing factors

Inventory allocation deals with the cost trade-off between savings in bulk shipments to stores and risk of stock-out costs

- Costs online channel
- Costs store channel
- Total cost
$\left.\begin{array}{l}\begin{array}{l}\text { Total } \\ \text { costs }\end{array} \\ \begin{array}{l}\text { OOS-costs } \\ \text { online channel }\end{array} \\ \hline\end{array} \begin{array}{l}\text { Logistics and reallocation costs } \\ \text { (forward and backward logistics) }\end{array}\right)$

Agenda

1. Motivation and omni-channel retailing
2. Omni-channel inventory allocation problem

3. Model development

4. Results
5. Summary and future area of research

Modeling approach

A stochastic DP minimizes the process, out-of-stock and discount costs considering the various decision stages and both sales channels

Notation

Indices

l locations
r discount levels
t periods

Parameter

c allocation costs (DC to store, store to DC, transshipment between stores)
q initial inventory
π unit profit for each sales phase and price level

Random variables

D Demand at location for each sales phase and price level

Auxilliary variables

A, B Start/end inventory at location
$Z \quad$ Realized sales

Decision variables
$x \quad$ Reallocation volume
y Discount level

The decisions during the planning horizon can be represented as stochastic dynamic program

Inventory related decisions and auxiliary variables of the SDP

Modeling approach
A stochastic DP maximizes the total marginal profit considering the various decision stages and both sales channels

Objective function

$$
\begin{aligned}
& \max !\mathrm{TP}= \\
& \sum_{t=1}^{\tau} \sum_{l=0}^{L} \pi_{l t}^{s a l e} \cdot E\left[Z_{l t}\right] \\
& +\sum_{t=\tau+1}^{T} \sum_{l=0}^{L} \sum_{r=1}^{R} \pi_{l t r}^{d i s c} \cdot E\left[Z_{l t}\right] \cdot y_{r} \\
& +\sum_{l=0}^{L} \pi_{l}^{r e m n} \cdot E\left[A_{l T}\right] \\
& -\sum_{l=0}^{L} \sum_{l=0, l \neq k}^{L} \sum_{t=1}^{T} c_{l k} \cdot x_{l k t}
\end{aligned}
$$

Realized profit from sales during main season

Realized profit from sales during after-season and for selected discount

Realized profit from remnant sales at the end of after-season

Total costs for reallocation of items between locations at the beginning of different periods

Modeling approach

A stochastic DP minimizes the process, out-of-stock and discount costs considering the various decision stages and both sales channels

Constraints

Available inventory at the beginning of period

$$
t_{B_{l t}}=A_{l, t-1}-\sum_{k=0, k \neq l}^{L} x_{l k t}+\sum_{l=0, l \neq k}^{L} x_{k l t}
$$

$$
l=0,1, \ldots, L ; t=1,2, \ldots, T(2)
$$

Sales volume in main season

$$
Z_{l t}=\min \left[D_{l t} ; B_{l t}\right] \quad l=0,1, \ldots, L ; t=1, \ldots, \tau(3)
$$

Sales volume in after season

$Z_{l t}=\min \left[D_{l t r} ; B_{l t}\right] \cdot y_{r}$

$$
l=0,1, \ldots, L ; t=\tau+1, \ldots, T(4)
$$

Inventory level at the end of period t

$$
A_{l t}=B_{l t}-Z_{l t} \quad l=0,1, \ldots, L ; t=1,2, \ldots, T(5)
$$

Discount scheme and variables definition
$\sum_{r=1}^{R} y_{r}=1$

$$
A_{l t} \epsilon \mathbb{Z}_{0}^{+} ; B_{l t} \epsilon \mathbb{Z}_{0}^{+} ; Z_{l t} \in \mathbb{Z}_{0}^{+}
$$

$$
\begin{equation*}
l=0,1, \ldots, L ; t=1,2, \ldots, T(7),(8),(9) \tag{6}
\end{equation*}
$$

$$
l, k=0,1, \ldots, L ; t=1,2, \ldots, T(10)
$$

$$
r=1,2, \ldots, R(10)
$$

Agenda

1. Motivation and omni-channel retailing
2. Omni-channel inventory allocation problem
3. Model development

4. Results

5. Summary and future area of research

Results

The case study covers a data setting with one DC, 60 stores, different inventory levels and a broad set of cost constellations

Initial inventory

Financials
Values tested [in currency units]

Item price	14 (low)	28 (medium)	56 (high)
Logistics costs			
- Shipment costs to customers	2.8		
- Initial bulk stocking of stores	0.01		
- Restocking of stores	0.3		
- Return from store to DC	1.0		
- Transshipment between stores	1.2		
Lost sales costs			
- in distance channel	margin - shipment costs to customers		
- in store channel	margin - restocking costs of stores		
Discounts in discount phase	\{10\%, 20\%, 30\%\}		
Remnant costs after end of selling			
- Remnant value for remnant items	50\%		
- Remnant cost distance channel	margin*rem.value+customer shipment costs		
- Remnant cost store channel	margin*rem.value+restocking costs of stores		

Results

... the numerical study covers a data setting with multiple demand constellations

Demand

Mean demand ratios	Values tested [ratios]			
Total demand as \% of initial total stock at DC	$\begin{aligned} & 50 \% \\ & \text { (low) } \end{aligned}$	$\begin{gathered} 100 \% \\ \text { (medium) } \end{gathered}$	150% (high)	
Demand share of main season as \% of total demand		50\%		Different combinations of financials and demand data results in
Demand share of online channel as \% of total demand		10\%		
Demand elasticity				
Additional demand on discounts, as a factor of the discount		1.0		9 different data sets
Demand is assumed to be uniformly distributed with a spread of 40 in distance channel and 20 for each store and sales phase.				simulated 100 times each

Solution approach

We apply different solution approaches to the inventory allocation problem

	Allocation volume determined by			Focus on following slides
	Integrated allocation problem (exact)	Two-phase allocation problem (AP-heuristics)	Demand ratio (DR-heuristics)	Lot-for-lot
Frequency of decisions	Application of OCIAP model Solutions only for two-store cases possible	OCIAP applied to each phase with known demand distribution ${ }^{1}$	Proportional allocation based on expected mean demand	Replenishment after sales based on first-come-first serve logic
2xbulk (2B)	2B-exact	2B-AP	2B-DR	---
1xbulk (1B)	1B-exact	1B-AP	1B-DR	---
continuous $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ -	---	---	---	Lot-for-Lot

Numerical results

Total profit can be increased with efficient allocation methods
Overview of case study results
Average profit change of 900 examples with varying demand and price ratios, Case company

Profit change vs. lot-for-lot policy

		0.62%
	0.42%	
-0.17\%		
1B-DR	2B-DR	1B-AP

1) AP - allocation heuristics improves profit on average by 0.7 ppt. in comparison to demand ratio allocation (AP vs. DR)
2 A second bulk allocation improves profit on average by $0.2 \mathrm{ppt}(2 \mathrm{~B}$ vs. 1 B)

Numerical results

(1) Optimal policy highly depends on the demand ratio and margins (1/2) Allocation with AP model vs. allocation by demand ratio Average profit of 9×100 examples, Case company

Profit change of 2B-AP and 2B-DR vs. Iot-for-lot policy

- Allocation with AP model results in higher profits than the demand-ratiobased allocation, and on average in higher
- Demand-ratio based allocation is worse than lot-for-lot
- For each demand scenario the magnitude decreases as share of reallocation costs decreases

Numerical results

(2) Optimal policy highly depends on the demand ratio and margins (2/2) Two vs. one bulk allocation
Average profit of 9×100 examples, Case company

Profit change of 2B and 1B vs. Iot-for-lot policy

- 2B-AP outperforms in all cases 1B-AP
- Option to allocate a second bulk volume improves profit on average by 0.2 ppt.
- However, bulk allocation (regardless if $2 B$ or $1 B$), is less efficient than lot-forlot with medium demand products

Solution approach

We extend the bulk allocation approach with a flexible buffer

Numerical results

Optimal policy highly depends on the demand ratio and prices

Bulk allocation with vs. without puffer
Average profit of 9×100 examples, Case company

Profit change of BF-AP and 2B-AP vs. lot-for-lot policy

- 2B-AP policy is only outperforming BF-AP for high demand products
- BF-AP policy is always better than lot-for-lot policy, but profit delta decreases with higher prices

Agenda

1. Motivation and omni-channel retailing
2. Omni-channel inventory allocation problem
3. Model development
4. Results
5. Summary and future area of research

Numerical results

Key learnings and managerial insights

Preliminary results based on case study

1. Introduction of flexible puffers matters!
2. Efficient allocation approach outperforms proportional allocation!
3. Bulk allocation improves logistics costs (two bulk allocations are better than one bulk and better than lot-for-lot replenishment)

However, improvement potential depends mainly on demand levels, gross margin and logistics costs

References

Hübner, A., Wollenburg, J. \& A. Holzapfel (2016): Retail logistics in the transition from multi-channel to omni-channel, in: International Journal of Physical Distribution \& Logistics Management

Hübner, A., Holzapfel, A. \& H. Kuhn (2016): Distribution systems in multi-channel retailing. In: Business Research

Hübner, A., Wollenburg, J. \& H. Kuhn (2016): Last mile fulfilment and distribution in omni-channel grocery retailing: A strategic planning framework, in: International Journal of Retailing and Distribution Management

Hübner, A., A. Holzapfel \& H. Kuhn (2015): Operations management in multi-channel retailing, in: Operations Management Research

Wollenburg, J., Holzapfel, A., Hübner, A. \& H. Kuhn (2016): Configuring retail fulfillment processes for omni-channel customer steering, Working Paper

Wollenburg, J., Hübner, A., Kuhn, H. \& A. Trautrims (2016): From bricks-and-mortar to bricks-and-clicks - an exploratory survey on network structures in omni-channel grocery retailing, Working paper

Holzapfel, A., Kuhn, H. \& A. Hübner (2017): Inventory allocation in omni-channel fashion retailing, Working paper

Many thanks for your attention!

Catholic University of Eichstaett-Ingolstadt
Department of Operations
Auf der Schanz 49
85049 Ingolstadt
Tel. 084193721823
www.multichannellogistik.net

