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Research framework

▪ The main goal of the research is to develop a methodology (Simulation 

cutting approach) to reduce the search space in simulation-optimization 

problems.

x1

x2

Search space

The features we want: 

▪ A structure behind simulation 

output

▪ General enough to be used in 

couple with optimization 

techniques

▪ Flexible enough to be 

customized on the problem to 

exploit structural properties
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▪ The Joint Workstation, Workload and Buffer Allocation Problem (JWWBAP) 

is a production system design problem:

▪ System: flow line (G/G/1/k queue)

▪ Assumptions: stochastic processing time, general distributions, continuously 

divided workload, finite buffer capacity, known expected total processing time.

▪ Decision variables: number of workstations 𝑚, workload 𝑠𝑗, buffer capacity 𝑏𝑗.

▪ Workload 𝑠𝑗 =
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑗

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

▪ Objective: minimize the investment cost.

▪ Constraint: a target throughput 𝛼∗ must be satisfied.

Problem Statement

⋯

𝑏1 = ∞ 𝑠1

Workstation 1 Workstation 2 Workstation 3 Workstation m 

𝑠2𝑏2 𝑏3 𝑠3 𝑠𝑚𝑏𝑚
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Problem related literature
Three kinds decision variables (Hillier F S et al.1995):

• Number of servers at each station

• Service rate of the servers

• Buffer capacity

Literature Server

number

Service 

rate

Buffer 

capacity

Optimization approach Evaluation approach

Shanthikumar

J.G et al. 1987 

X X Analytical method (concave function)

Hillier F S et al. 

1995

X X X Enumeration

Parallel tangents

Analytical method

Spinellis D et 

al. 2000

X X X simulated annealing algorithm Analytical method

Horng S C et 

al. 2016

X X elitist teaching-learning-based 

optimization and optimal 

computing budget allocation 

methods

Meta model

Van Woensel

T et al. 2010

X X Non-linear optimization 

methodology

Analytical method

Smith, J.G

2016

X X Mixed-integer sequential 

quadratic programming

Analytical method
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▪ DEO is an integrated simulation optimization modeling framework. 

▪ A DEO model can describe the simulation trajectories of a set of 

possible systems, i.e., its configuration is defined with variables.

▪ A DEO model is a Mathematical Programming (MP) model of Event 

Relationship Graphs (ERGs).

▪ DEO main features:

▪ Simulation is regarded as a white box. 

▪ Ability to solve stochastic system optimization problems.

▪ Introducing MP solution techniques (e.g., Benders Decomposition (BD)).

Discrete Events Optimization
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Example of DEO: G/G/1
𝑚𝑖𝑛{𝑐𝑠𝑡

𝑠 − 𝑝𝑎𝑡
𝑎 +𝑁𝜖𝜖 + σ𝑖=1

3 (𝑒𝑖
𝑎+𝑒𝑖

𝑑)}

s.t. 𝑡𝑖
𝑎 = 𝑡𝑎 𝑧𝑖

𝑎

𝑡𝑖
𝑠 = 𝑡𝑠𝑧𝑖

𝑠

𝑒1
𝑎 = 0

𝑒2
𝑎 − 𝑒1

𝑎 ≥ 𝑡2
𝑎

𝑒3
𝑎 − 𝑒2

𝑎 ≥ 𝑡3
𝑎

𝑒1
𝑑 − 𝑒1

𝑎 ≥ 𝑡1
𝑠

𝑒2
𝑑 − 𝑒2

𝑎 ≥ 𝑡2
𝑠

𝑒3
𝑑 − 𝑒3

𝑎 ≥ 𝑡3
𝑠

𝑒2
𝑑 − 𝑒1

𝑑 ≥ 𝑡2
𝑠

𝑒3
𝑑 − 𝑒2

𝑎 ≥ 𝑡3
𝑠

σ𝑖=1
3 (𝑒𝑖

𝑑−𝑒𝑖
𝑎 − 𝑡𝑖

𝑠)

3
− 𝜖 ≤ 𝜏∗

G/G/1 with infinite buffer and 3 entities

Decision variables: 

average inter arrival time, average service time

ERG: Entity Relationship Graph (Schruben, 1983)
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DEO related literature

DEO: Generalized

modeling methodology
Pedrielli (2013), Matta et al. 

(2014), Pedrielli et al. (2015a),

Pedrielli at al. (2017)

Matta (2008)

Alfieri et al. (2012)

Matta et al.(2015b)

Göttlich et al. (2016)

Zhang et al. (2016)

Approximate solution

This work

Production rate 

control problem

Stolletz and Weiss (2013) 

Stolletz and Weiss (2015)

Weiss et al. (2017)

BAP

JWWBAP

Tan (2015)

Exact solution



Parameters

𝑈𝑀 Upper bound of workstation number

𝐶𝑀 Unit cost of one workstation

𝑈𝐵 Upper bound of stage buffer capacity

𝐶𝐵 Unit cost of one buffer slot

𝑁 Number of parts in simulation

𝑁𝜖 Penalty for violence of target throughput

𝑧𝑖𝑗 Random numbers for stochastic 

processing time generation

𝑀 Large number in big-M constraints

𝛼∗ Target average inter-departure time

𝐷 Number of parts in the warm-up period

𝑚𝑖𝑛 𝐶𝑀෍

𝑗=1

𝑈𝑀

𝑚𝑗 + 𝐶𝐵 ෍

𝑗=1

𝑈𝑀−1

෍

𝑘=1

𝑈𝐵

𝑘𝑥𝑗𝑘 +෍

𝑗=1

𝑈𝑀

෍

𝑖=1

𝑁

𝑒𝑖𝑗
𝑓
+ 𝑁𝜖𝜖

s.t.

෍

𝑗=1

𝑈𝑀

𝑠𝑗 = 1

𝑠𝑗 ≤ 𝑚𝑗 , ∀𝑗

𝑚𝑗 ≤ 𝑚𝑗−1, ∀𝑗

෍

𝑘=1

𝑈𝐵

𝑥𝑗𝑘 = 1, ∀𝑗

𝑡𝑖𝑗 = 𝜙 𝑠𝑗 , 𝑧𝑖𝑗 , ∀𝑖, 𝑗

𝑒𝑖1
𝑓
≥ 𝑒𝑖

𝑎 + 𝑡𝑖1, ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−1,𝑗

𝑓
≥ 𝑡𝑖,𝑗 , ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖,𝑗−1

𝑓
≥ 𝑡𝑖,𝑗 , ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−𝑘,𝑗+1

𝑓
≥ 𝑡𝑖𝑗 −𝑀 1 − 𝑥𝑗𝑘 , ∀𝑖, 𝑗, 𝑘

σ𝑗=1
𝑈𝑀 σ𝑖=𝐷

𝑁 𝑒𝑖𝑗
𝑓

𝑁 − 𝐷
− 𝜖 ≤ 𝛼∗

𝑚𝑗 , 𝑥𝑗𝑘 ∈ 0,1 , 0 ≤ 𝑠𝑗 ≤ 1

𝑒𝑖𝑗
𝑓
≥ 0, 𝑡𝑖𝑗 ≥ 0, 𝜖 ≥ 0

Variables

𝑚𝑗 Workstation allocation

Workstation number=σ𝑗=1
𝑈𝑀 𝑚𝑗

𝑠𝑗 Workload allocation

𝑥𝑗𝑘 Buffer allocation

Buffer capacity 𝑏𝑗 = σ𝑘=1
𝑈𝐵 𝑘𝑥𝑗𝑘

𝑒𝑖𝑗
𝑓 Finishing time of part 𝑖 at stage 𝑗

𝑡𝑖𝑗 Processing time of part 𝑖 at stage 𝑗

𝜖 Feasibility gap variable

Workstation 

cost

Buffer cost Simulation Feasibility



𝑚𝑖𝑛 𝐶𝑀෍

𝑗=1

𝑈𝑀

𝑚𝑗 + 𝐶𝐵 ෍

𝑗=1

𝑈𝑀−1

෍

𝑘=1

𝑈𝐵

𝑘𝑥𝑗𝑘 +෍

𝑗=1

𝑈𝑀

෍

𝑖=1

𝑁

𝑒𝑖𝑗
𝑓
+ 𝑁𝜖𝜖

s.t.

෍

𝑗=1

𝑈𝑀

𝑠𝑗 = 1

𝑠𝑗 ≤ 𝑚𝑗 , ∀𝑗

𝑚𝑗 ≤ 𝑚𝑗−1, ∀𝑗

෍

𝑘=1

𝑈𝐵

𝑥𝑗𝑘 = 1, ∀𝑗

𝑡𝑖𝑗 = 𝜙 𝑠𝑗 , 𝑧𝑖𝑗 , ∀𝑖, 𝑗

𝑒𝑖1
𝑓
≥ 𝑒𝑖

𝑎 + 𝑡𝑖1, ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−1,𝑗

𝑓
≥ 𝑡𝑖,𝑗 , ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖,𝑗−1

𝑓
≥ 𝑡𝑖,𝑗 , ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−𝑘,𝑗+1

𝑓
≥ 𝑡𝑖𝑗 −𝑀 1 − 𝑥𝑗𝑘 , ∀𝑖, 𝑗, 𝑘

σ𝑗=1
𝑈𝑀 σ𝑖=𝐷

𝑁 𝑒𝑖𝑗
𝑓

𝑁 − 𝐷
− 𝜖 ≤ 𝛼∗

𝑚𝑗 , 𝑥𝑗𝑘 ∈ 0,1 , 0 ≤ 𝑠𝑗 ≤ 1

𝑒𝑖𝑗
𝑓
≥ 0, 𝑡𝑖𝑗 ≥ 0, 𝜖 ≥ 0

Optimization

Simulation

Workload is completely allocated

Workload 𝑠𝑗>0 ⇔ workstation 𝑗 is allocated

Workstations are arranged in a flow 

Only one size is allocated to each buffer 

Random variate generation

Parts arrive before processing

Part sequence

Processing sequence

Blocking due to finite buffer 

Performance constraint

The complexity of the exact model is high.



11Page .

Processing time generation

𝑡𝑖𝑗 = 𝜙 𝑠𝑗 , 𝑧𝑖𝑗

𝑧𝑖𝑗: random generated number for processing time of part i at station j (known)

𝑠𝑗: workload at station j

𝜙: a linear function of 𝑠𝑗

Some examples

𝑡𝑖𝑗 = 𝑧𝑖𝑗𝑠𝑗

▪ Beta distribution: 

▪ 𝑡𝑖𝑗~𝐵𝑒𝑡𝑎(2,2) on (0, 2𝑇𝑠𝑗), 𝑧𝑖𝑗~𝐵𝑒𝑡𝑎 2,2 on (0, 2𝑇)

▪ Exponential distribution: 

▪ 𝑡𝑖𝑗~𝐸𝑥𝑝(
1

𝑇𝑠𝑗
), 𝑧𝑖𝑗 = −𝑇𝑙𝑛(𝑢𝑖𝑗), 𝑢𝑖𝑗~𝑢𝑛𝑖𝑓(0,1)



𝑚𝑖𝑛 𝐶𝑀෍

𝑗=1

𝑈𝑀

𝑚𝑗 + 𝐶𝐵 ෍

𝑗=1

𝑈𝑀−1

෍

𝑘=1

𝑈𝐵

𝑘𝑥𝑗𝑘 +෍

𝑗=1

𝑈𝑀

෍

𝑖=1

𝑁

𝑒𝑖𝑗
𝑓
+ 𝑁𝜖𝜖

s.t.

෍

𝑗=1

𝑈𝑀

𝑠𝑗 = 1

𝑠𝑗 ≤ 𝑚𝑗 , ∀𝑗

𝑚𝑗 ≤ 𝑚𝑗−1, ∀𝑗

෍

𝑘=1

𝑈𝐵

𝑥𝑗𝑘 = 1, ∀𝑗

𝑡𝑖𝑗 = 𝜙 𝑠𝑗 , 𝑧𝑖𝑗 , ∀𝑖, 𝑗

𝑒𝑖1
𝑓
≥ 𝑒𝑖

𝑎 + 𝑡𝑖1, ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−1,𝑗

𝑓
≥ 𝑡𝑖,𝑗 , ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖,𝑗−1

𝑓
≥ 𝑡𝑖,𝑗 , ∀𝑖, 𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−𝑘,𝑗+1

𝑓
≥ 𝑡𝑖𝑗 −𝑀 1 − 𝑥𝑗𝑘 , ∀𝑖, 𝑗, 𝑘

σ𝑗=1
𝑈𝑀 σ𝑖=𝐷

𝑁 𝑒𝑖𝑗
𝑓

𝑁 − 𝐷
− 𝜖 ≤ 𝛼∗

𝑚𝑗 , 𝑥𝑗𝑘 ∈ 0,1 , 0 ≤ 𝑠𝑗 ≤ 1

𝑒𝑖𝑗
𝑓
≥ 0, 𝑡𝑖𝑗 ≥ 0, 𝜖 ≥ 0

Optimization: 

the master problem

Simulation: 

the subproblem
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Benders Decomposition

Number of iterations: s= 0
Set of generated cuts: 𝐂 = ∅
Set of initial constraints: 𝐂𝟎

Exit

Yes

No

Is the subproblem

feasible?

Feasibility cut: 𝐜𝐬: 𝐛
𝐓𝐮∗𝐬 − 𝐅 𝐲 𝐓𝐮∗𝐬 ≤ 0

𝐂 = 𝐂 ∪ {𝐜𝐬}

s = s + 1

Solve dual subproblem with ത𝐲𝐬:

Optimal solution=𝐮∗𝐬，UB=optimum

Optimality cut: 𝐜𝐬: 𝐛
𝐓𝐮∗𝐬 − 𝐅 𝐲 𝐓𝐮∗𝐬 + 𝐟 𝐲 ≤ 𝑧

UB=LB?Yes

No

Solve master problem s.t. 𝐂 ∪ 𝐂𝟎 :

optimal solution=ത𝐲𝐬, LB=optimum

Original problem

𝑚𝑖𝑛{ 𝐜T𝒙 + f 𝒚 + 𝑵𝑻𝝐}
s.t. 𝐀𝒙 + 𝐅 𝒚 + 𝝐 ≥ 𝐛

Subproblem

𝑚𝑖𝑛{ 𝐜T𝒙 + 𝐍𝐓𝝐 + f ഥ𝒚 }
s.t. 𝐀𝒙 + 𝐅 ഥ𝒚 + 𝝐 ≥ 𝐛

Dual subproblem

𝑚𝑎𝑥{𝐮𝐓(𝐛 − 𝐅 ഥ𝒚 ) + f ഥ𝒚 }
s.t. 𝐮𝐓𝐀 ≤ 𝐜

𝜽 ≤ 𝑵



𝑚𝑖𝑛 ෍

𝑗=1

𝑈𝑀

෍

𝑖=1

𝑁

𝑒𝑖𝑗
𝑓
+𝑁𝜖𝜖

𝑒𝑖1
𝑓
≥ 𝑒𝑖

𝑎 + 𝑡𝑖1 : 𝑎𝑖

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−1,𝑗

𝑓
≥ 𝑡𝑖,𝑗 : 𝑢𝑖𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖,𝑗−1

𝑓
≥ 𝑡𝑖,𝑗 : 𝑣𝑖𝑗

𝑒𝑖𝑗
𝑓
− 𝑒𝑖−𝑏𝑗,𝑗+1

𝑓
≥ 𝑡𝑖𝑗 : 𝑤𝑖𝑗

σ𝑗=1
𝑈𝑀 σ𝑖=𝐷

𝑁 𝑒𝑖𝑗
𝑓

𝑁 − 𝐷
− 𝜖 ≤ 𝛼∗ : 𝜃

The subproblem The dual subproblem

Original contribution: the optimal solution of the 

dual subproblem can be calculated from simulation. 



15Page .

▪ The graph of the network flow problem (the dual subproblem) is the 

same as the ERG.

▪ The variables of the dual subproblem are the flows of all arcs.

▪ Each node 𝑒𝑖𝑗
𝑓

is a sink which absorbs one unit flow.

Network flow: Dual Subproblem
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▪ After simulation (with any tool), the ERG becomes a simulated ERG.

▪ The optimal solution of the dual subproblem can be derived from the 

simulated ERG.

▪ 𝜽 = 𝑵𝝐. (Optimality can be proved)

Network flow: Dual Subproblem
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Simulation cutting approach

Simulate the system

Generate the simulated ERG

Calculate the flow of arcs

Yes

No

𝝐 = 𝟎?

Cut

Solve the master problem

−𝑀 ෍

𝑗=1

𝑈𝑀−1

෍

𝑘=1

𝑈𝐵

෍

𝑖=1+𝑏𝑗

𝑁

ҧ𝑥𝑗𝑘ഥ𝑤𝑗𝑘 1 − 𝑥𝑗𝑘 +෍

𝑗=1

𝑈𝑀

෍

𝑖=2

𝑁

𝜙 𝑠𝑗 , 𝑧𝑖𝑗 ത𝑢𝑖𝑗 + ҧ𝑣𝑖𝑗 + ഥ𝑤𝑖𝑗 + ത𝑎1𝜙 𝑠𝑗, 𝑧𝑖𝑗 − 𝛼∗ ҧ𝜃 ≤ 0

▪ Only the master problem is solved by 

optimization solvers (e.g., Cplex). 

▪ Simulation is used to solve the network 

flow problem.

▪ The cut reflects the simulation event 

relationship.

FEASIBILITY CUT
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Numerical experiments

The two graphs are box plots from 10 different sample paths.

Processing time distribution of all workstations: Beta(2,2)

Average total processing time: 1 time unit

Target throughput: 1.5-5 parts/time unit

Number of parts for solution: 100 000

Number of parts for verification: 1000 000



19Page .

Solution Pattern

The graph and the data are from 10 different sample paths.

Processing time distribution: Beta(2,2)

Average total processing time: 1 time unit

Target throughput: 3, 4, 5 parts/time unit

Number of parts for solution: 100 000
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Efficiency analysis
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Efficiency analysis
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▪ The DEO model of the JWWBAP is exactly solved, and the solution is the global 

optimal based on one sample path.

▪ The simulation cutting approach uses the event relationships in simulation to 

build the cut. 

▪ Simulation is used as a white box: simulation does not only evaluate the 

optimization output, but recognizes the events which impacts the performance 

most significantly as well.

Contribution
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▪ The simulation cutting approach will be applied to solve more complex DEO 

models, e.g., G/G/m. In a DEO model of G/G/m system, the subproblem

(simulation) is a mixed integer programming model, so the dual subproblem

cannot be easily generated.

▪ As the solution of the master problem takes most of the computational effort, 

more efficient algorithms for solving the master problem will bring significant 

improvement of the simulation cutting approach.

▪ How to manage cut from several independent replications ?

Future research 
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