

Outline of Lecture Topics

- A. Motivation

Outline of Lecture Topics

- A. Motivation
- B. Background

Outline of Lecture Topics

- A. Motivation
- B. Background
- C. Literature Review

Outline of Lecture Topics

- A. Motivation
- B. Background
- C. Literature Review
- D. Optimization Models

Outline of Lecture Topics

- A. Motivation
- B. Background
- C. Literature Review
- D. Optimization Models
- E. Performance \& Optimization

Algorithms

Outline of Lecture Topics

- A. Motivation
- B. Background
- C. Literature Review
- D. Optimization Models
- E. Performance \& Optimization

Algorithms

- F. Experimental Results

Outline of Lecture Topics

- A. Motivation
- B. Background
- C. Literature Review
- D. Optimization Models
- E. Performance \& Optimization

Algorithms

- F. Experimental Results
- G. Summary \& Conclusions

Background

- Assumptions
- Unpaced, asynchronous Flow
line or FMS
- Finite Buffers \& Production

Blocking

Background

- Assumptions
- Unpaced, asynchronous Flow line or FMS

Background

- Assumptions
- Unpaced, asynchronous Flow line or FMS
- Finite Buffers \& Production Blocking

Background

- Assumptions
- Unpaced, asynchronous Flow line or FMS
- Finite Buffers \& Production Blocking
- Closed Network Models, finite population, single-servers

Background

- Assumptions
- Unpaced, asynchronous Flow line or FMS
- Finite Buffers \& Production Blocking
- Closed Network Models, finite population, single-servers
- Approximate Mean Value Analysis (MVA) Model

Background

- Assumptions
- Unpaced, asynchronous Flow line or FMS
- Finite Buffers \& Production Blocking
- Closed Network Models, finite population, single-servers
- Approximate Mean Value Analysis (MVA) Model
- Two-Moment General Service Time Distributions

Background

- Assumptions
- Unpaced, asynchronous Flow line or FMS
- Finite Buffers \& Production Blocking
- Closed Network Models, finite population, single-servers
- Approximate Mean Value Analysis (MVA) Model
- Two-Moment General Service Time Distributions

- Two-Moment Blocking Probability

Background

- Assumptions
- Unpaced, asynchronous Flow line or FMS
- Finite Buffers \& Production Blocking
- Closed Network Models, finite population, single-servers
- Approximate Mean Value Analysis (MVA) Model
- Two-Moment General Service Time Distributions

- Two-Moment Blocking Probability
- Integrated Material Handling System

Literature Review

Figure: Simultaneous Optimization Literature Morphology

Simultaneous Optimization Problem Methodology

Service Rates μ Buffer Capacity K

$\begin{gathered} \text { Pattern } \\ \text { A } \end{gathered}$		
$\begin{gathered} \text { Pattern } \\ \text { B } \end{gathered}$		
$\begin{aligned} & \text { Pattern } \\ & \text { C } \end{aligned}$		
$\begin{gathered} \text { Pattern } \\ \text { D } \end{gathered}$		

Simultaneous Optimization Problem Methodology

Basic Issues:

- How can we develop a closed network approximation for generally distributed finite blocking processes?

Simultaneous Optimization Problem Methodology

Basic Issues:

- How can we develop a closed network approximation for generally distributed finite blocking processes?
- How can we account for blocking from General distributions?

Simultaneous Optimization Problem Methodology

Basic Issues:

- How can we develop a closed network approximation for generally distributed finite blocking processes?
- How can we account for blocking from General distributions?
- Can we create an efficient running time performance and optimization algorithm?

Simultaneous Optimization Problem Methodology

Basic Issues:

- How can we develop a closed network approximation for generally distributed finite blocking processes?
- How can we account for blocking from General distributions?
- Can we create an efficient running time performance and optimization algorithm?
- What will be the service rate and buffer allocation patterns for series, merge, and split topologies.

Optimization Formulation

Primal : Maximize $\theta(\mathrm{K}, \mu, \mathrm{N})$
s.t.:
$\sum_{j}^{m}, \mu=m$
$\sum_{i}^{m}, k \leq D$
$N \leq \frac{\left\lceil\sum_{j} K_{j}+m\right\rceil}{2}$
$K_{j} \leq L_{q}^{j} \forall j$
$\mu_{j}^{\ell}>0$
$K_{j} \geq 1 \forall j$

Optimization Formulation

Primal : Maximize $\theta(\mathrm{K}, \mu, \mathrm{N})$
s.t.:

$$
\begin{aligned}
\sum_{j}^{m} b_{j} \mu_{j} & =m \\
\sum_{j}^{m} d_{j} K_{j} & \leq D \\
N & \leq \frac{\left\lceil\sum_{j} K_{j}+m\right]}{2} \\
K_{j} & \leq L_{q}^{j} \forall j \\
\mu_{j}^{l} & >0 \\
K_{j} & \geq 1 \forall j
\end{aligned}
$$

Dual : Minimize $\sum_{\mathrm{j}} \mathrm{d}_{\mathrm{j}} \mathrm{K}_{\mathrm{j}}$
s.t.:

$$
\begin{aligned}
\theta & \geq \theta^{\min } \\
\sum_{j}^{m} b_{j} \mu_{j} & =m \\
N & \leq \frac{\left.\mid \sum_{j} K_{j}+m\right]}{2} \\
K_{j} & \leq L_{q}^{j} \forall j \\
\mu_{j}^{\ell} & >0 \\
K_{j} & \geq 1 \forall j
\end{aligned}
$$

Iterative Performance and Optimization Algorithm

Performance Mathematical Models

- Underlying logic behind Queue Decomposition idea:

Performance Mathematical Models

- Underlying logic behind Queue Decomposition idea:
- $M / G / K / K$ queue acts as a holding node for the parts.

Performance Mathematical Models

- Underlying logic behind Queue Decomposition idea:
- $M / G / K / K$ queue acts as a holding node for the parts.
- As the population increases, the congestion (blocking) increases as a function of the \# of parts within the system.

Performance Mathematical Models

- Underlying logic behind Queue Decomposition idea:
- $M / G / K / K$ queue acts as a holding node for the parts.
- As the population increases, the congestion (blocking) increases as a function of the \# of parts within the system.
- Effective service rates decay as a function of the blocking in the system.

Queue Decomposition Algorithm

- Step 1.0: Add a pair of nodes $M / G / K / K$ and $M / M / 1$ for each finite buffer queue. Estimate System population.

$$
N^{*} \leq \frac{\left\lceil\sum_{j} K_{j}+m\right\rceil}{2}
$$

Queue Decomposition Algorithm

- Step 1.0: Add a pair of nodes $M / G / K / K$ and $M / M / 1$ for each finite buffer queue. Estimate System population.

$$
N^{*} \leq \frac{\left\lceil\sum_{j} K_{j}+m\right\rceil}{2}
$$

- Step 2.0: Adjust the free-flow speed and state dependent service rate.

$$
\begin{align*}
V_{1}(\ell) & =V_{1}(\ell)\left(1-p_{K}(\ell+1)\right. \tag{1}\\
\mu_{n} & =n \frac{V_{1}}{\mathcal{L}} \exp \left[-\left(\frac{n-1)}{\beta}\right)^{\gamma}\right] \tag{2}
\end{align*}
$$

Queue Decomposition Algorithm

- Step 1.0: Add a pair of nodes $M / G / K / K$ and $M / M / 1$ for each finite buffer queue. Estimate System population.

$$
N^{*} \leq \frac{\left\lceil\sum_{j} K_{j}+m\right\rceil}{2}
$$

- Step 2.0: Adjust the free-flow speed and state dependent service rate.

$$
\begin{align*}
V_{1}(\ell) & =V_{1}(\ell)\left(1-p_{K}(\ell+1)\right. \tag{1}\\
\mu_{n} & =n \frac{V_{1}}{\mathcal{L}} \exp \left[-\left(\frac{n-1)}{\beta}\right)^{\gamma}\right] \tag{2}
\end{align*}
$$

- Step 3.0: Calculate the fundamental output measures of residence time $w_{\ell}(N)$, throughput $\theta_{\ell}(N)$, and work-in-process n_{ℓ} from the Mean Value Analysis algorithm.

Blocking Probability (Two moment estimation)

If one fixes the number of servers, one can solve for the blocking probability of the $M / M / 1 / K$ system.

$$
\begin{equation*}
\mathrm{p}_{\mathrm{K}}=\frac{(1-\rho) \rho^{\mathrm{K}}}{1-\rho^{\mathrm{K}+1}} \Rightarrow \mathrm{~K}=\left\lceil\frac{\ln \left(p_{K} /\left(1-\rho+p_{K} \rho\right)\right)}{\ln (\rho)}\right\rceil \tag{3}
\end{equation*}
$$

Blocking Probability (Two moment estimation)

If one fixes the number of servers, one can solve for the blocking probability of the $M / M / 1 / K$ system.

$$
\begin{align*}
& \mathrm{p}_{\mathrm{K}}=\frac{(1-\rho) \rho^{\mathrm{K}}}{1-\rho^{K+1}} \Rightarrow \mathrm{~K}=\left\lceil\frac{\ln \left(p_{K} /\left(1-\rho+p_{K} \rho\right)\right)}{\ln (\rho)}\right\rceil \tag{3}\\
& B=\frac{\left(\ln \left(\frac{p_{K}}{1-\rho+p_{K} \rho}\right)-\ln (\rho)\right)\left(2+\sqrt{\frac{\rho}{e^{s^{2}}}} s^{2}-\sqrt{\frac{\rho}{e^{s^{2}}}}\right)}{2 \ln (\rho)} \tag{4}
\end{align*}
$$

Blocking Probability (Two moment estimation)

If one fixes the number of servers, one can solve for the blocking probability of the $M / M / 1 / K$ system.

$$
\begin{align*}
& \mathrm{p}_{\mathrm{K}}=\frac{(1-\rho) \rho^{\mathrm{K}}}{1-\rho^{\mathrm{K}+1}} \Rightarrow \mathrm{~K}=\left\lceil\frac{\ln \left(p_{K} /\left(1-\rho+p_{K} \rho\right)\right)}{\ln (\rho)}\right] \tag{3}\\
& B=\frac{\left(\ln \left(\frac{p_{K}}{1-\rho+p_{K} \rho}\right)-\ln (\rho)\right)\left(2+\sqrt{\frac{\rho}{e^{s^{2}}}} s^{2}-\sqrt{\frac{\rho}{e^{s^{2}}}}\right)}{2 \ln (\rho)} \tag{4}
\end{align*}
$$

In the case of $c=1$, the following expression is obtained for the blocking probability:

$$
\begin{equation*}
p_{K}=\frac{\rho^{\frac{\sqrt{\rho} s^{2}-\sqrt{\bar{\rho}}+2 K}{2+\sqrt{\rho} s^{2}-\sqrt{\rho}}}(\rho-1)}{\left(\rho^{2 \frac{1+\sqrt{\rho} \rho^{2}-\sqrt{\rho}+K}{2+\sqrt{\rho} s^{2}-\sqrt{\rho}}}-1\right)} \tag{5}
\end{equation*}
$$

Blocking Probability (Two moment estimation)

P_{K} Comparisons M/G/1/2 $s^{2}=\frac{1}{2}$

Blocking Probability (Two moment estimation)

General Service Time Approximation

The standard Equation 6 in the MVA for the expected delay time at a queue is based upon the PASTA property that

$$
\begin{equation*}
w_{\ell}(N)=\tau_{\ell}\left[1+n_{\ell}(N-1)\right] \tag{6}
\end{equation*}
$$

General Service Time Approximation

The standard Equation 6 in the MVA for the expected delay time at a queue is based upon the PASTA property that

$$
\begin{equation*}
w_{\ell}(N)=\tau_{\ell}\left[1+n_{\ell}(N-1)\right] \tag{6}
\end{equation*}
$$

Accounting for the remaining service time which is a function of the utilization of the queue, the full service time of the number of customers in the queue, and the full service time of the arriving customer:

$$
\begin{equation*}
w_{\ell}(N)=\rho_{\ell}(N-1) \frac{\tau_{\ell}\left(1+s^{2}\right)}{2}+\left(n_{\ell}(N-1)-\rho_{\ell}(N-1)\right) \tau_{\ell}+\tau_{\ell} \tag{7}
\end{equation*}
$$

Mean Value Analysis (MVA) Algorithm

- Reiser and Lavenberg's modified property of product-form networks to estimate the delay or residence time at the queue:

$$
\begin{equation*}
w_{\ell}(N)=\rho_{\ell}(N-1) \frac{\tau_{\ell}\left(1+s^{2}\right)}{2}+\left(n_{\ell}(N-1)-\rho_{\ell}(N-1)\right) \tau_{\ell}+\tau_{\ell} \tag{8}
\end{equation*}
$$

Mean Value Analysis (MVA) Algorithm

- Reiser and Lavenberg's modified property of product-form networks to estimate the delay or residence time at the queue:

$$
\begin{equation*}
w_{\ell}(N)=\rho_{\ell}(N-1) \frac{\tau_{\ell}\left(1+s^{2}\right)}{2}+\left(n_{\ell}(N-1)-\rho_{\ell}(N-1)\right) \tau_{\ell}+\tau_{\ell} \tag{8}
\end{equation*}
$$

- Little's equation for product chains:

$$
\begin{equation*}
\lambda_{\ell}(N)=\frac{N}{\left[\sum_{\ell=1}^{m} w_{\ell}(N) \alpha_{\ell}\right]} \tag{9}
\end{equation*}
$$

Mean Value Analysis (MVA) Algorithm

- Reiser and Lavenberg's modified property of product-form networks to estimate the delay or residence time at the queue:

$$
\begin{equation*}
w_{\ell}(N)=\rho_{\ell}(N-1) \frac{\tau_{\ell}\left(1+s^{2}\right)}{2}+\left(n_{\ell}(N-1)-\rho_{\ell}(N-1)\right) \tau_{\ell}+\tau_{\ell} \tag{8}
\end{equation*}
$$

- Little's equation for product chains:

$$
\begin{equation*}
\lambda_{\ell}(N)=\frac{N}{\left[\sum_{\ell=1}^{m} w_{\ell}(N) \alpha_{\ell}\right]} \tag{9}
\end{equation*}
$$

- Little's equation for queues:

$$
\begin{equation*}
n_{\ell}(N)=\lambda_{\ell}(N) w_{\ell}(N) \tag{10}
\end{equation*}
$$

Sequential Quadratic Programming Problem

$$
\text { QPP: Minimize } f\left(x_{\ell}\right)=\nabla f\left(x_{\ell}\right)^{t} p+\frac{1}{2} p^{t} H\left(x_{\ell}\right) p
$$

$$
\text { subject to: } \mathrm{g}_{i}\left(\mathrm{x}_{\ell}\right)+\nabla \mathrm{g}_{i}\left(\mathrm{x}_{\ell}\right)^{t} \mathrm{p} \leq 0 \quad \forall \ell \in \mathcal{M}
$$

where for the network with a given population N :

- $n_{\ell}:=$ is the expected length of queue ℓ,
- $\lambda_{\ell}:=$ is the throughput products at queue ℓ,
- $w_{\ell}:=$ is the expected delay products at queue ℓ,
- $x_{\ell}:=$ is the decision vector which is a function of μ_{ℓ}, K_{ℓ}, N
- $\rho_{\ell}:=$ utilization rates of each queue,
- $\mathrm{p}:=$ is a direction vector,
- $\mathcal{M}:=$ is the set of inequalities described in (1)-(6) or (7) through (12)

Optimization Integrated MVA Algorithm

Step 1.0 Given a starting solution $x=\left(\mu_{\ell}, K_{\ell}, N\right)$, formulate:

$$
\operatorname{SQP}\left(x_{\ell}\right)
$$

Optimization Integrated MVA Algorithm

Step 1.0 Given a starting solution $\mathrm{x}=\left(\mu_{\ell}, K_{\ell}, N\right)$, formulate:

$$
\operatorname{SQP}\left(x_{\ell}\right)
$$

Step 2.0 Solve $\operatorname{SQP}\left(x_{\ell}\right)$ by calculating:
Step 2.1 Average delay at each queue

$$
w_{\ell}(N)=\rho_{\ell}(N-1) \frac{\tau_{\ell}\left(1+s^{2}\right)}{2}+\left(n_{\ell}(N-1)-\rho_{\ell}(N-1)\right) \tau_{\ell}+\tau_{\ell}
$$

Step 2.2 Average throughput at each queue

$$
\lambda_{\ell}=\frac{N}{\sum_{\ell=1}^{N} w_{\ell} y_{\ell}}
$$

Step 2.3 Average number at each queue

$$
n_{\ell}=\lambda_{\ell} w_{\ell}
$$

Optimization Integrated MVA Algorithm

Step 1.0 Given a starting solution $\mathrm{x}=\left(\mu_{\ell}, K_{\ell}, N\right)$, formulate:

$$
\operatorname{SQP}\left(x_{\ell}\right)
$$

Step 2.0 Solve $\operatorname{SQP}\left(x_{\ell}\right)$ by calculating:
Step 2.1 Average delay at each queue

$$
w_{\ell}(N)=\rho_{\ell}(N-1) \frac{\tau_{\ell}\left(1+s^{2}\right)}{2}+\left(n_{\ell}(N-1)-\rho_{\ell}(N-1)\right) \tau_{\ell}+\tau_{\ell}
$$

Step 2.2 Average throughput at each queue

$$
\lambda_{\ell}=\frac{N}{\sum_{\ell=1}^{N} w_{\ell} y_{\ell}}
$$

Step 2.3 Average number at each queue

$$
n_{\ell}=\lambda_{\ell} w_{\ell}
$$

Step 3.0 After solving $\operatorname{QPP}\left(x_{\ell}\right)$, set $x_{\ell+1}=x_{\ell}+p$
Step 4.0 Check for convergence $\left(\epsilon=1.0 \times 10^{-7}\right)$
Set $\mathrm{k} \leftarrow k+1$ and repeat Step 2.0

Series Comparison

Primal Problem							
D	m	$\mu_{1,}, \mu_{2}$	K_{1}, K_{2}	N	θ	W	B\&B
8	2	$(1,1)$	$(4,3)$	5	0.833	6.00	37
9	2	$(1,1)$	$(5,4)$	6	0.857	7.00	24
13	2	$(.983, .983)$	$(7,6)$	8	0.874	9.15	22

Primal Problem								
D	m	μ_{1}, μ_{2}	K_{1}, K_{2}	N	θ	W	B\&B	
8	2	$(1,1)$	$(4,3)$	5	0.833	6.00	37	
9	2	$(1,1)$	$(5,4)$	6	0.857	7.00	24	
13	2	$(.983, .983)$	$(7,6)$	8	0.874	9.15	22	

Dual Problem						
m	μ_{1}, μ_{2}	K_{1}, K_{2}	N	θ	W	$\mathrm{~B} \& B$
2	$(1,1)$	$(4,3)$	5	0.833	6.00	8
2	$(1,1)$	$(4,5)$	6	0.857	7.00	54
2	$(1,1)$	$(5,6)$	7	0.875	8.00	71

Table 1. Two-stage Primal and Dual Comparison Experiments

3-Stage Experiments

\#	s^{2}	$\bar{\mu}^{*}$	$\overline{\mathrm{K}}^{*}$	N^{*}	$\theta_{\alpha}, \theta_{s}$	\%	W_{α}, W_{s}	\%	B\&B
1	1	$(1,1,1)$	$(6,7,7)$	12	(0.8569,0.8431)	1.64	(14.003,14.233)	1.62	493
2	1	$(1,1,1)$	$(6,8,8)$	13	(0.8665,0.8514)	1.77	(15.004,15.269)	1.74	2310
3	1	$(1,1,1)$	$(9,9,10)$	16	(0.8887,0.8765)	1.39	$(18.005,18.254)$	1.36	408
4	1	$(1,1,1)$	$(11,11,12)$	19	(0.9045,0.8931)	1.28	(21.006,21.274)	1.26	433
5	1	$(1.01,1.01,0.98)$	$(17,18,17)$	28	$(0.9307,0.9233)$	0.80	(30.086,30.325)	0.79	386
6	1/4	$(1,1,1)$	$(2,3,3)$	6	(0.8466,0.8904)	4.92	$(7.087,6.739)$	5.16	86
7	1/2	$(1,1,1)$	$(4,4,4)$	8	(0.8532,0.8666)	1.55	(9.377,9.2318)	1.57	33
8	3/4	$(1,1,1)$	$(6,5,5)$	10	(0.8556,0.8554)	0.02	(11.687,11.690)	0.03	331
9	5/4	$(1,1,1)$	$(8,8,6)$	13	(0.8487,0.8614)	1.47	(15.3182,15.091)	1.51	190
10	3/2	$(1,1,1)$	$(9,8,9)$	15	(0.8505,0.8252)	3.07	$(17.6362,18.177)$	2.98	302
11	$\frac{1}{2}, 1, \frac{1}{2}$	$(1,1,1)$	$(4,5,5)$	9	(0.8502,0.8533)	0.36	$(10.586,10.547)$	0.37	82
12	$(1,1,1)$	$(1,1,1)$	$(7,7,6)$	12	(0.8444,0.8240)	2.47	(14.212,14.562)	2.41	254
13	$\left(\frac{1}{2}, 1, \frac{1}{2}\right)$	$(1,1,1)$	$(5,5,6)$	10	(0.8510,0.8432)	0.93	$(11.7503,11.859)$	0.92	564

Table: Three-stage Experiments

SQP Optimization Experiment

--- FINAL CONVERGENCE ANALYSIS ---

Objective function value:
Approximation of solution: service rate $->0.10000000 \mathrm{D}+01$
buffers-> 0.50000000D+01
population-> $0.10000000 \mathrm{D}+02$
Constraint function values: G(X) =
$0.00000000 \mathrm{D}+000.14895618 \mathrm{D}+00 \quad 0.14895618 \mathrm{D}+00 \quad 0.14895618 \mathrm{D}+00$
$0.50438204 \mathrm{D}-02 \quad 0.00000000 \mathrm{D}+00 \quad 0.12314750 \mathrm{D}+01 \quad 0.11708550 \mathrm{D}+01$
$0.17979592 \mathrm{D}+01$
Distances from lower bounds: XL-X = $-0.20000000 \mathrm{D}+00-0.20000000 \mathrm{D}+00-0.20000000 \mathrm{D}+00-0.30000000 \mathrm{D}+01$ $-0.30000000 \mathrm{D}+01-0.40000000 \mathrm{D}+01-0.50000000 \mathrm{D}+01$
Distances from upper bounds: XU-X =

$$
\begin{array}{llll}
0.20000000 \mathrm{D}+01 & 0.20000000 \mathrm{D}+01 & 0.20000000 \mathrm{D}+01 & 0.20000000 \mathrm{D}+01 \\
0.20000000 \mathrm{D}+01 & 0.10000000 \mathrm{D}+01 & 0.30000000 \mathrm{D}+01 &
\end{array}
$$

Number of function calls: NFUNC = 414

- within TR method:
- integer derivatives:

Number of gradient calls:
Number of calls of QP solver:

- 2nd order corrections:

Number of B\&B nodes:
Termination reason:
$F(X)=0.13333333 D+01$
X
$0.10000000 \mathrm{D}+01 \quad 0.10000000 \mathrm{D}+01$
$0.50000000 \mathrm{D}+01 \quad 0.60000000 \mathrm{D}+01$

NF_TR = 119
NF_2D = 295
NGRAD $=39$
NQL $=179$
NQL2 = 59
NODES = 564
IFAIL $=0$

4-Stage Experiments

\#	s^{2}	$\bar{\mu}^{*}$	K^{*}	N^{*}	$\theta_{\alpha}, \theta_{s}$	\%	W_{α}, W_{s}	\%	B\&B
1	1	(1,1,1,1)	(6,7,6,6)	15	(0.8331,0.8165)	2.03	(18.004,18.371)	2.00	872
2	1	(1,1,1,1)	$(6,7,9,9)$	18	(0.8569,0.8373)	2.34	(21.004,21.497)	2.29	179
3	1	(1,1,1,1)	$(9,10,11,11)$	23	(0.8817,0.8697)	1.38	(26.085,26.446)	1.37	2974
4	1	(1,1,1,1)	$(12,13,13,13)$	28	(0.8999,0.8907)	1.03	(31.113,31.435)	1.02	2575
5	1	(1,1,1,1)	$(19,20,19,19)$	41	$(0.9306,0.9221)$	0.92	(44.057,44.462)	0.91	4224
6	1/4	(1,1,1,1)	(3,4,3,3)	9	(0.8348,0.8944)	6.66	(10.781,10.062)	7.15	4249
7	1/2	(1,1,1,1)	(4,4,5,4)	11	(0.8344,0.8545)	2.35	(13.184,12.872)	2.42	65
8	3/4	(1,1,1,1)	$(6,5,5,5)$	13	(0.8337,0.8347)	0.12	(15.5927,15.573)	0.13	4774
9	5/4	(1,1,1,1)	(8,7,7,7)	17	(0.8326,0.8394)	0.81	($20.4171,20.253$)	0.81	2360
10	3/2	(1,1,1,1)	$(8,8,9,8)$	19	(0.8322,0.7960)	4.55	$(22.8307,23.869)$	4.35	2803
11	$\frac{3}{4}, 1,1, \frac{3}{4}$	(1,1,1,1)	$(6,5,7,5)$	14	(0.8321,0.8242)	0.96	$(16.825,16.986)$	0.95	2313

12	(1,1,1,1)	(1,1,1,1)	$(6,7,7,7)$	16	(0.8301,0.8057)	3.03	(19.2741,19.858)	2.94	1523
13	$\left(\frac{1}{2}, 1,1, \frac{1}{2}\right)$	(1,1,1,1)	$(6,7,6,6)$	15	(0.8406,0.8289)	1.41	$(17.8438,18.092)$	1.37	506

Table: Four-stage Experiments

Four-Stage Split and Merge

N Population

s^{2}	$\bar{\mu}^{*}$	$\mathrm{~K}^{*}$	N^{*}	$\theta_{\alpha}, \theta_{s}$	$\%$	W_{α}, W_{s}	$\%$
$(1,1,1,1)$	$(1.33,0.67,0.67,1.33)$	$(5,6,6,6)$	14	$(1.0158,0.9913)$	2.47	$(13.782,14.122)$	2.41
$(1,1,1,1)$	$(1.35,0.65,0.65,1.35)$	$(8,9,9,9)$	20	$(1.0818,1.0752)$	0.61	$(18.488,18.600)$	0.60
$(1,1,1,1)$	$(1.34,0.66,0.67,1.33)$	$(10,10,10,10)$	22	$(1.1019,1.1098)$	0.71	$(19.966,19.822)$	0.73
$(1,1,1,1)$	$(1.35,0.65,0.65,1.35)$	$(15,16,16,16)$	34	$(1.1488,1.1688)$	1.71	$(29.596,29.088)$	1.75
$(1,1,1,1)$	$(1.35,0.65,0.65,1.35)$	$(24,23,24,24)$	50	$(1.1752,1.2143)$	3.22	$(42.546,41.173)$	3.33
$\left(1, \frac{1}{2}, \frac{1}{2}, 1\right)$	$(1.35,0.65,0.65,1.35)$	$(23,23,23,24)$	49	$(1.1927,1.2337)$	3.32	$(41.085,39.716$	3.45
$\left(1, \frac{3}{4}, \frac{3}{4}, 1\right)$	$(1.35,0.65,0.65,1.35)$	$(16,13,12,16)$	31	$(1.1504,1.1697)$	1.65	$(26.947,26.501)$	1.68
$\left(1, \frac{3}{2}, \frac{3}{2}, 1\right)$	$(1.35,0.65,0.65,1.35)$	$(11,14,13,11)$	27	$(1.1038,1.1019)$	0.17	3353	
$(1,2,2,1)$	$(1.35,0.65,0.65,1.35)$	$(10,10,10,10)$	22	$(1.0536,1.0428)$	1.04	$(20.882,24.502)$	0.16

Table: Four-stage Split and Merge Experiments

Four-Stage Split and Merge w/ Conveyors

s^{2}	$\bar{\mu}^{*}$	$\mathrm{~K}^{*}$	N^{*}	$\theta_{\alpha,}, \theta_{s}$	$\%$	W_{α}, W_{s}	$\%$	$\mathrm{~B} \& \mathrm{~B}$
$(1,1,1,1)$	$(1.35,0.65,0.65,1.35)$	$(5,6,6,6)$	14	$(1.0094,1.0403)$	2.97	$(13.869,13.457)$	3.06	429
$(1,1,1,1)$	$(1.34,0.66,0.66,1.34)$	$(6,7,7,7)$	16	$(1.0533,1.10760)$	2.11	$(15.190,14.869)$	2.16	571
$(1,1,1,1)$	$(1.23,0.77,0.71,1.29)$	$(8,8,8,9)$	19	$(1.1034,1.1088)$	0.49	$(17.219,17.134)$	0.50	2321
$(1,1,1,1)$	$(1.35,0.65,0.65,1.35)$	$(11,11,11,12)$	25	$(1.1514,1.1506)$	0.07	$(21.714,21.726)$	0.06	337
$(1,1,1,1)$	$(1.34,0.66,0.65,1.233)$	$(12,13,13,13)$	28	$(1.1714,1.1684)$	0.26	$(23.904,23.962)$	0.24	1764
$\left(1, \frac{1}{2}, \frac{1}{2}, 1\right)$	$(1.35,0.65,0.65,1.35)$	$(6,7,6,6)$	15	$(1.0607,1.0952)$	3.15	$(14.141,13.696)$	3.25	90
$(1,2,2,1)$	$(1.19,0.81,0.81,1.19)$	$(7,9,8,9)$	19	$(1.0636,1.0404)$	2.23	$(17.863,18.261)$	2.18	196

Table: Four-stage Split and Merge Experiments with Conveyors

Six-Stage Split and Merge

$N / 2$

s^{2}	$\bar{\mu}^{*}$	$\mathrm{~K}^{*}$	N^{*}	$\theta_{\alpha}, \theta_{s}$	$\%$
$(1,1,1,1,1,1)$	$(0.75,0.75,1.50,1.50,0.75,0.75)$	$(4,5,5,5,5,5)$	18	$(1.0147,1.0055)$	0.91
$(1,1,1,1,1,1)$	$(0.75,0.75,1.50,1.50,0.75,0.75)$	$(5,5,6,6,5,6)$	20	$(1.0522,1.0570)$	0.45
$(1,1,1,1,1,1)$	$(0.75,0.75,1.50,1.50,0.75,0.75)$	$(6,7,7,7,7,7)$	24	$(1.1102,1.1182)$	0.72
$(1,1,1,1,1,1)$	$(0.74,0.74,1.51,1.51,0.76,0.75)$	$(8,8,8,8,8,9)$	28	$(1.1507,1.1657)$	1.29
$(1,1,1,1,1,1)$	$(0.76,0.75,1.49,1.49,0.75,0.75)$	$(8,10,10,10,10,9)$	32	$(1.1851,1.2014)$	1.36
$\left(1,1, \frac{1}{2}, \frac{1}{2}, 1,1\right)$	$(0.76,0.76,1.49,1.49,0.76,0.74)$	$(5,6,6,6,7,7)$	22	$(1.1065,1.1273)$	1.85
$\left(1,1, \frac{3}{4}, \frac{3}{4}, 1,1\right)$	$(0.74,0.74,1.50,1.49,0.77,0.72)$	$(5,7,9,8,6,6)$	24	$(1.1117,1.1184)$	0.60
$\left(1,1, \frac{3}{2}, \frac{3}{2}, 1,1\right)$	$(0.75,0.75,1.50,1.50,0.75,0.75)$	$(6,7,8,8,6,8)$	25	$(1.1022,1.0978)$	0.40
$(1,1,2,2,1,1)$	$(0.75,0.75,1.50,1.50,0.75,0.75)$	$(7,9,8,9,6,8)$	27	$(1.1041,1.0849)$	1.77

W_{α}, W_{s}	$\%$	$\mathrm{~B} \& \mathrm{~B}$
$(35.480,35.799)$	0.89	365
$(38.0144,37.839)$	0.46	1220
$(43.234,42.925)$	0.72	808
$(48.667,48.038)$	1.31	3287
$(54.004,53.269)$	1.38	9039
$(39.764,39.027)$	1.89	1775
$(43.176,42.915)$	0.61	5657
$(45.364,45.543)$	0.39	237
$(48.908,49.773)$	1.74	3543

Six-Stage Split and Merge with Conveyors

s^{2}	$\bar{\mu}^{*}$	K^{*}	N^{*}	$\theta_{\alpha}, \theta_{s}$	\%
(1,1,1,1,1,1)	(0.75,0.75,1.50,1.50,0.75,0.75)	(3,4,4,4,4,4)	15	(1.0210,1.0599)	3.67
(1,1,1,1,1,1)	(0.75,0.75,1.50,1.50,0.75,0.75)	(4,5,4,5,4,5)	17	(1.0705,1.0920)	1.97
(1,1,1,1,1,1)	(0.75,0.75,1.50,1.50,0.75,0.75)	(5,5,5,5,6,5)	19	$(1.1116,1.1293)$	1.57
(1,1,1,1,1,1)	(0.75,0.75,1.50,1.50,0.75,0.75)	(5,6,7,7,6,6)	22	(1.1610,1.1563)	0.41
(1,1, 1, 1, 1,1)	(0.75,0.75,1.50,1.50,0.75,0.75)	(6,7,7,7,7,7)	24	(1.1878,1.1895)	0.14
($\left.1,1, \frac{1}{2}, \frac{1}{2}, 1,1\right)$	(0.75,0.75,1.50,1.50,0.75,0.75)	$(4,5,5,5,5,5)$	18	(1.1119,1.1189)	0.63
$(1,1,2,2,1,1)$	$(0.75,0.75,1.50,1.50,0.75,0.75)$	(5,7,5,5,7,6)	21	$(1.1106,1.1277)$	1.52
	W_{α}, W_{s}	\% B\&B			
	(29.383,28.301)	3.827269			
	(31.761,31.133)	2.027164			
	(34.186,33.647)	1.607871			
	$(37.898,38.049)$	0.40577			
	(40.410,40.350)	0.15463			
	(32.376,32.171)	$0.64 \quad 7523$			
	(37.816,37.242)	1.549527			

Ten-stage Split and Merge

Ten-stage Split and Merge with Conveyors

Resulting Rule Patterns

- For the μ, given the right hand size service rate bound m, the μ - allocation should follow the topological split and branching probabilities proportionally such that the expected utilization rate

$$
\mu \rightarrow \rho_{\ell} \approx 1 \forall \ell \in G(V, E)
$$

Resulting Rule Patterns

- For the μ, given the right hand size service rate bound m, the μ - allocation should follow the topological split and branching probabilities proportionally such that the expected utilization rate

$$
\mu \rightarrow \rho_{\ell} \approx 1 \forall \ell \in G(V, E)
$$

- For the buffer allocation, a uniform allocation should prevail no matter what the split-merge topology configuration.

$$
K_{\ell} \rightarrow \frac{K}{m}
$$

Resulting Rule Patterns

- For the μ, given the right hand size service rate bound m, the μ - allocation should follow the topological split and branching probabilities proportionally such that the expected utilization rate

$$
\mu \rightarrow \rho_{\ell} \approx 1 \forall \ell \in G(V, E)
$$

- For the buffer allocation, a uniform allocation should prevail no matter what the split-merge topology configuration.

$$
K_{\ell} \rightarrow \frac{K}{m}
$$

-This latter result is surprising.

- The combined two pattern rules seem to be very robust.

Summary \& Conclusions and Open Questions

- Service Rate \& Buffer

Allocation Problem

- Simultaneous $x=(\mu, \mathrm{K})$

Optimization

$N / 3$

Summary \& Conclusions and Open Questions

- Service Rate \& Buffer Allocation Problem
- Simultaneous $x=(\mu, \mathrm{K})$ Optimization
- Uniform Pattern verification

$N / 3$

Summary \& Conclusions and Open Questions

- Service Rate \& Buffer Allocation Problem
- Simultaneous $x=(\mu, \mathrm{K})$ Optimization
- Uniform Pattern verification
- $\mu(m)$ should follow the topology and be proportional to $\rho_{\ell} \equiv 1$
- K should be uniform.
- Includes general service and the material handling system.

$N / 3$

Summary \& Conclusions and Open Questions

- Service Rate \& Buffer Allocation Problem
- Simultaneous $x=(\mu, \mathrm{K})$ Optimization
- Uniform Pattern verification
- $\mu(m)$ should follow the topology and be proportional to $\rho_{\ell} \equiv 1$
- K should be uniform.
- Includes general service and the material handling system.
- Performs pretty well.

$N / 3$

Summary \& Conclusions and Open Questions

- Service Rate \& Buffer Allocation Problem
- Simultaneous $x=(\mu, \mathrm{K})$ Optimization
- Uniform Pattern verification
- $\mu(m)$ should follow the topology and be proportional to $\rho_{\ell} \equiv 1$
- K should be uniform.
- Includes general service and the material handling system.
- Performs pretty well.

- Open Questions
- Larger Networks \rightarrow Patterns

Summary \& Conclusions and Open Questions

- Service Rate \& Buffer Allocation Problem
- Simultaneous $x=(\mu, \mathrm{K})$ Optimization
- Uniform Pattern verification
- $\mu(m)$ should follow the topology and be proportional to $\rho_{\ell} \equiv 1$
- K should be uniform.
- Includes general service and the material handling system.
- Performs pretty well.
- Open Questions

- Larger Networks \rightarrow Patterns
- Patterns for $\{\lambda, \mu, c, K, N\}$ simultaneously

Summary \& Conclusions and Open Questions

- Service Rate \& Buffer Allocation Problem
- Simultaneous $x=(\mu, \mathrm{K})$ Optimization
- Uniform Pattern verification
- $\mu(m)$ should follow the topology and be proportional to $\rho_{\ell} \equiv 1$
- K should be uniform.
- Includes general service and the material handling system.
- Performs pretty well.
- Open Questions
- Larger Networks \rightarrow Patterns

N/3

Complex Networks

- Patterns for $\{\lambda, \mu, c, K, N\}$
simultaneously
- Mixed Network Topologies

