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@ Problem and motivation

© Conceptual optimization model

© Brute force MIP model

@ LocalSolver plus flow line decomposition
© Elements of a Branch & Bound approach

© No numerical results, but ...
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Problem and motivation

Stochastic flow lines with alternative machines
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Problem

Serial production process

Single product with target production rate PR™"

Decision I: Selection of one the alternative machines j =1, ..., J;
with stochastic processing times T, ; for each station s

@ Decision Il: Capacity by of the buffer behind station
s=1,...,5-1

Objective: Minimize required capital budget for machines and
buffers
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Conceptual optimization model

© Conceptual optimization model
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Conceptual model
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Conceptual optimization model

Conceptual model
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Difficulties: PR(v, x) non-linear, no closed-form expression, integrality
constraints on decision variables
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Solving the model

Dimensions:
@ Performance evaluation methodology

@ Optimization methodology
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Solving the model

Dimensions:
@ Performance evaluation methodology
@ Optimization methodology
Approaches:
@ Simulation optimization in an LP
@ LocalSolver plus decomposition

@ Branch & Bound plus decomposition
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Brute force MIP model

© Brute force MIP model
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Brute force MIP model | (court. Sophie Weiss)

Main features:
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Main features:
e Sampling of large number of processing times ds;, for workpieces
w at stage s for machine alternative
@ Propagation of starting and finishing times XS, and XF,, via
linear constraints
@ W, work piece for warm-up phase of the line

@ Very general and flexible, very time-consuming
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Brute force MIP model | (court. Sophie Weiss)

Main features:
e Sampling of large number of processing times ds;, for workpieces
w at stage s for machine alternative

@ Propagation of starting and finishing times XS, and XF,, via
linear constraints

@ W, work piece for warm-up phase of the line
@ Very general and flexible, very time-consuming

o Limited usefulness, computation of reference values
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Brute force MIP model
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LocalSolver plus flow line decomposition

© LocalSolver plus flow line decomposition
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LocalSolver-Approach

© A atexnormalsize LI ]

Commercial software, academic licenses

Heuristic search algorithms

Combinatorial problems, discrete decision variables
Specific math-modeling language

APIs for C++, Python etc.

New cool feature: Native functions !!!
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Code Example
Constraint
Js

Vs’j = 1, Vs

j=t
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Code Example

Constraint
Js
Vs’j = 1, Vs
j=1

Use of the C++ API:

// Exactly one machine is selected per station

for (int i = 0; i < nbStations; i++) {
LSExpression nbMachinesSelected = MyModel.sum ();
for (int j = 0; j < nbCandidateMachines[i]; j++){
nbMachinesSelected += X[i][j]:

}

MyModel. constraint (nbMachinesSelected = 1);
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Flow line decomposition in native function

Flow line decomposition:

o Each station s characterized by E[T;] and 2
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Flow line decomposition in native function

Flow line decomposition:

o Each station s characterized by E[T;] and 2

e Decomposition into system of GI/G/1/N stopped arrival queues
(Buzacott, Liu, Shanthikumar, Manitz)
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Flow line decomposition:
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Flow line decomposition in native function

Flow line decomposition:

o Each station s characterized by E[T;] and 2

e Decomposition into system of GI/G/1/N stopped arrival queues
(Buzacott, Liu, Shanthikumar, Manitz)

o lterative algorithm determines production rate & buffer levels
o Fast and accurate
@ Implemented in C++ as a LocalSolver native function

@ Called by LocalSolver via API during during each LocalSolver
search move
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Elements of a Branch & Bound approach

© Elements of a Branch & Bound approach
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Branch&Bound: Relaxation

Relaxation of integrality constraints

e Stations mixed by fractions 0 < v, ; < 1 of machines
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Branch&Bound: Relaxation

Relaxation of integrality constraints
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Branch&Bound: Relaxation

Relaxation of integrality constraints
e Stations mixed by fractions 0 < v, ; < 1 of machines
o Buffer sizes X, real-valued

e Evaluation via GI/G/1/K queueing model decomposition

E[Ts] and Var[T] of stochastic virtual mixed processing times Ty

Js

To=> Ve Tsj

J=1
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Branch & Bound: Lower bounds on required
budget

Basic idea

@ Start with cheapest currently possible configuration
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Elements of a Branch & Bound approach

Branch & Bound: Lower bounds on required
budget

Basic idea

@ Start with cheapest currently possible configuration
@ Determine numerical “gradient” of PR() of v, X
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Elements of a Branch & Bound approach

Branch & Bound: Lower bounds on required
budget

Basic idea

@ Start with cheapest currently possible configuration
@ Determine numerical “gradient” of PR() of v, X
© Phase I: Increase budget until PR > PR™"

Q lterate

O Phase II: Re-distribute current budget while PR increases
© Phase Ill: Decrease budget until PR ~ PR™r"

© Terminate when budget stops to decrease for feasible solution or
when PR™" is not reached in Phase |
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Branch & Bound: Branching

Basic ideas

© Branch on fractional values machine selection and buffer size
variables v ;, X,
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Basic ideas
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@ Add constraints on lower and upper bounds on Vv, X,

Stefan Helber Machine selection & buffer allocation



Branch & Bound: Branching

Basic ideas
© Branch on fractional values machine selection and buffer size
variables v ;, X,
@ Add constraints on lower and upper bounds on Vv, X,

© Depth-first search (LIFO problem processing)
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Branch & Bound: Branching

Basic ideas
© Branch on fractional values machine selection and buffer size
variables v ;, X,
@ Add constraints on lower and upper bounds on Vv, X,

© Depth-first search (LIFO problem processing)

Observation: Relaxed selection variables v ; often binary, buffer
variables X, never
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Difficulties:

Gradient calculations

© Numerous constraints on the gradients
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Difficulties:

Gradient calculations

© Numerous constraints on the gradients

© Rosen’s projection method requires numerical solution of LSE
© PR only approximated

@ Gradients only approximated

Steepest ascent method

© PR highly non-linear, frequent gradient updates

@ Termination, numerical issues
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No numerical results, but ...

© No numerical results, but ...
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No numerical results, but ...

An extremely preliminary conclusion

First impression from Branch & Bound
@ Methods seems to work (in principle)
@ Algorithm complex and not yet stable
@ First feasible solutions can be found quickly

@ Bounds seem to be strong
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@ Improve stability
@ Serious numerical study

@ Model variants, e.g., space limitations
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No numerical results, but ...

An extremely preliminary conclusion

First impression from Branch & Bound
@ Methods seems to work (in principle)
@ Algorithm complex and not yet stable
@ First feasible solutions can be found quickly
@ Bounds seem to be strong
Future work
@ Improve stability
@ Serious numerical study

@ Model variants, e.g., space limitations

Thank you!!
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