Approaches for machine selection and buffer allocation in stochastic flow lines

Stefan Helber

Leibniz Universität Hannover

SMMSO 2017, Lecce

(1) Problem and motivation
(2) Conceptual optimization model
(3) Brute force MIP model
4. LocalSolver plus flow line decomposition
(5) Elements of a Branch \& Bound approach
(6) No numerical results, but ...

Stochastic flow lines with alternative machines

Problem

- Serial production process
- Single product with target production rate $P R^{\text {min }}$
- Decision I: Selection of one the alternative machines $j=1, \ldots, J_{s}$ with stochastic processing times $T_{s, j}$ for each station s
- Decision II: Capacity b_{k} of the buffer behind station $s=1, \ldots, S-1$
- Objective: Minimize required capital budget for machines and buffers

(1) Problem and motivation

(2) Conceptual optimization model

(3) Brute force MIP model

4 LocalSolver plus flow line decomposition
(5) Elements of a Branch \& Bound approach

6 No numerical results, but ...

Conceptual model

$$
\begin{array}{ll}
\operatorname{Min}=\sum_{s=1}^{S} \sum_{j=1}^{J_{s}} c r_{s, j}^{M} \cdot v_{s, j}+\sum_{s=1}^{S-1} c r_{s}^{B} \cdot x_{s} & \\
\sum_{j=1}^{J_{s}} v_{s, j}=1, & s=1, \ldots, S \\
P R(\underline{v}, \underline{x}) \geq P R^{\min } & \\
v_{s, j} \in\{0,1\}, & s=1, \ldots, S ; j=1, \ldots, J_{s} \\
x_{s} \in\{0,1,2,3, \ldots .\}, & s=1, \ldots, S-1
\end{array}
$$

Conceptual model

$$
\begin{array}{ll}
\operatorname{Min}=\sum_{s=1}^{S} \sum_{j=1}^{J_{s}} c r_{s, j}^{M} \cdot v_{s, j}+\sum_{s=1}^{S-1} c r_{s}^{B} \cdot x_{s} & \\
\sum_{j=1}^{J_{s}} v_{s, j}=1, & s=1, \ldots, S \\
P R(\underline{v}, \underline{x}) \geq P R^{\min } & \\
v_{s, j} \in\{0,1\}, & s=1, \ldots, S ; j=1, \ldots, J_{s} \\
x_{s} \in\{0,1,2,3, \ldots .\}, & s=1, \ldots, S-1
\end{array}
$$

Difficulties: $P R(\underline{v}, \underline{x})$ non-linear, no closed-form expression, integrality constraints on decision variables

Solving the model

Dimensions:

- Performance evaluation methodology
- Optimization methodology

Solving the model

Dimensions:

- Performance evaluation methodology
- Optimization methodology

Approaches:

- Simulation optimization in an LP
- LocalSolver plus decomposition
- Branch \& Bound plus decomposition

(1) Problem and motivation

(2) Conceptual optimization model

(3) Brute force MIP model

4 LocalSolver plus flow line decomposition
(5) Elements of a Branch \& Bound approach

6 No numerical results, but ...

Brute force MIP model I (court. Sophie Weiss)

Main features:

Brute force MIP model I (court. Sophie Weiss)

Main features:

- Sampling of large number of processing times $d_{\text {sjw }}$ for workpieces w at stage s for machine alternative j

Brute force MIP model I (court. Sophie Weiss)

Main features:

- Sampling of large number of processing times $d_{\text {siw }}$ for workpieces w at stage s for machine alternative j
- Propagation of starting and finishing times $X S_{s w}$ and $X F_{s w}$ via linear constraints

Brute force MIP model I (court. Sophie Weiss)

Main features:

- Sampling of large number of processing times $d_{\text {siw }}$ for workpieces w at stage s for machine alternative j
- Propagation of starting and finishing times $X S_{s w}$ and $X F_{s w}$ via linear constraints
- W_{0} work piece for warm-up phase of the line

Brute force MIP model I (court. Sophie Weiss)

Main features:

- Sampling of large number of processing times $d_{s j w}$ for workpieces w at stage s for machine alternative j
- Propagation of starting and finishing times $X S_{s w}$ and $X F_{s w}$ via linear constraints
- W_{0} work piece for warm-up phase of the line
- Very general and flexible, very time-consuming

Brute force MIP model I (court. Sophie Weiss)

Main features:

- Sampling of large number of processing times $d_{s j w}$ for workpieces w at stage s for machine alternative j
- Propagation of starting and finishing times $X S_{s w}$ and $X F_{s w}$ via linear constraints
- W_{0} work piece for warm-up phase of the line
- Very general and flexible, very time-consuming
- Limited usefulness, computation of reference values

Min $=\sum_{s=1}^{S} \sum_{j=1}^{J_{s}} c r_{s, j}^{M} \cdot V_{s, j}+\sum_{s=1}^{S-1} c r_{s}^{B} \cdot X_{s}$
$\sum_{j=1}^{J_{s}} V_{s, j}=1$,

$$
\begin{align*}
& \forall s \tag{2}\\
& \forall s, \forall w \tag{3}\\
& \forall s \leq S-1, \forall w \tag{4}\\
& \forall s, \forall w \leq W-1 \\
& \forall s \leq S-1, \forall b, \forall w \leq W-b \\
& \forall s \leq S-1 \\
& \forall s \leq S-1
\end{align*}
$$

$X S_{s, w}+\sum_{j=1}^{J_{s}} d_{s, j, w} \cdot V_{s, j} \leq X F_{s, w}$,
$X F_{s, w} \leq X S_{s+\mathbf{1}, w}$,
$X F_{s, w} \leq X S_{s, w+\mathbf{1}}$,
$X F_{S, W}-X F_{S, W_{0}} \leq \frac{W-W_{0}}{P R^{\min }}$
$X S_{s+\mathbf{1}, w}-X F_{s, w+b} \leq M \cdot\left(1-Y_{s, b}\right)$,
$\sum_{b=0}^{B_{s}} Y_{s, b}=1$,
$X_{s}=\sum_{b=0}^{B_{s}} b \cdot Y_{s, b}$,

(1) Problem and motivation

(2) Conceptual optimization model

(3) Brute force MIP model

4 LocalSolver plus flow line decomposition
(5) Elements of a Branch \& Bound approach

6 No numerical results, but ...

LocalSolver-Approach

LocalSolver

Mathematical optimization solver

Having modeled your optimization problem using common mathematical operators, LocalSolver provides you with high-quality solutions in short running times. Based on a heuristic search approach combining different optimization techniques, Local Solver scales up to millions of variables, running on basic computers. LocalSolver includes an innovative math modeling language for fast prototyping and lightweight object-oriented APIs for full integration, which makes it easy to use and deploy on any platform

- Solve highly nonilinear problems
- Quality solutions in seconds
- Scale up to millions of variables
- Innovative math modeling language
- Easy APis for C++, Java, .NET, Python
- Simple and transparent pricing
- Dedicated and responsive support
- Free for academics
- Commercial software, academic licenses
- Heuristic search algorithms
- Combinatorial problems, discrete decision variables
- Specific math-modeling language
- APls for $\mathrm{C}++$, Python etc.
- New cool feature: Native functions !!!

Code Example

Constraint

$$
\sum_{j=1}^{J_{s}} V_{s, j}=1, \quad \forall s
$$

Code Example

Constraint

$$
\sum_{j=1}^{J_{s}} V_{s, j}=1
$$

Use of the $\mathrm{C}++\mathrm{API}$:
// Exactly one machine is selected per station
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{nbStations} ; \mathrm{i}++$) \{ LSExpression nbMachinesSelected = MyModel.sum(); for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{nbCandidateMachines[i];} \mathrm{j}++$) $\{$ nbMachinesSelected $+=$ X[i][j];
\}
MyModel.constraint (nbMachinesSelected =1); \}

Flow line decomposition in native function

Flow line decomposition:

- Each station s characterized by $\mathrm{E}\left[T_{s}\right]$ and c_{s}^{2}

Flow line decomposition in native function

Flow line decomposition:

- Each station s characterized by $\mathrm{E}\left[T_{s}\right]$ and c_{s}^{2}
- Decomposition into system of GI/G/1/N stopped arrival queues (Buzacott, Liu, Shanthikumar, Manitz)

Flow line decomposition in native function

Flow line decomposition:

- Each station s characterized by $\mathrm{E}\left[T_{s}\right]$ and c_{s}^{2}
- Decomposition into system of $\mathrm{GI} / \mathrm{G} / 1 / \mathrm{N}$ stopped arrival queues (Buzacott, Liu, Shanthikumar, Manitz)
- Iterative algorithm determines production rate \& buffer levels

Flow line decomposition in native function

Flow line decomposition:

- Each station s characterized by $\mathrm{E}\left[T_{s}\right]$ and c_{s}^{2}
- Decomposition into system of $\mathrm{GI} / \mathrm{G} / 1 / \mathrm{N}$ stopped arrival queues (Buzacott, Liu, Shanthikumar, Manitz)
- Iterative algorithm determines production rate \& buffer levels
- Fast and accurate

Flow line decomposition in native function

Flow line decomposition:

- Each station s characterized by $\mathrm{E}\left[T_{s}\right]$ and c_{s}^{2}
- Decomposition into system of $\mathrm{GI} / \mathrm{G} / 1 / \mathrm{N}$ stopped arrival queues (Buzacott, Liu, Shanthikumar, Manitz)
- Iterative algorithm determines production rate \& buffer levels
- Fast and accurate
- Implemented in C++ as a LocalSolver native function

Flow line decomposition in native function

Flow line decomposition:

- Each station s characterized by $\mathrm{E}\left[T_{s}\right]$ and c_{s}^{2}
- Decomposition into system of $\mathrm{GI} / \mathrm{G} / 1 / \mathrm{N}$ stopped arrival queues (Buzacott, Liu, Shanthikumar, Manitz)
- Iterative algorithm determines production rate \& buffer levels
- Fast and accurate
- Implemented in C++ as a LocalSolver native function
- Called by LocalSolver via API during during each LocalSolver search move

(1) Problem and motivation

(2) Conceptual optimization model

(3) Brute force MIP model

4 LocalSolver plus flow line decomposition
(5) Elements of a Branch \& Bound approach
6) No numerical results, but ...

Branch\&Bound: Relaxation

Relaxation of integrality constraints

- Stations mixed by fractions $0 \leq \bar{v}_{s, j} \leq 1$ of machines

Branch\&Bound: Relaxation

Relaxation of integrality constraints

- Stations mixed by fractions $0 \leq \bar{v}_{s, j} \leq 1$ of machines
- Buffer sizes \bar{x}_{s} real-valued

Branch\&Bound: Relaxation

Relaxation of integrality constraints

- Stations mixed by fractions $0 \leq \bar{v}_{s, j} \leq 1$ of machines
- Buffer sizes \bar{X}_{s} real-valued
- Evaluation via $\mathrm{GI} / \mathrm{G} / 1 / \mathrm{K}$ queueing model decomposition

Branch\&Bound: Relaxation

Relaxation of integrality constraints

- Stations mixed by fractions $0 \leq \bar{v}_{s, j} \leq 1$ of machines
- Buffer sizes \bar{x}_{s} real-valued
- Evaluation via $\mathrm{GI} / \mathrm{G} / 1 / \mathrm{K}$ queueing model decomposition
$\mathrm{E}\left[T_{s}\right]$ and $\operatorname{Var}\left[T_{s}\right]$ of stochastic virtual mixed processing times T_{s}

Branch\&Bound: Relaxation

Relaxation of integrality constraints

- Stations mixed by fractions $0 \leq \bar{v}_{s, j} \leq 1$ of machines
- Buffer sizes \bar{X}_{s} real-valued
- Evaluation via $\mathrm{GI} / \mathrm{G} / 1 / \mathrm{K}$ queueing model decomposition
$\mathrm{E}\left[T_{s}\right]$ and $\operatorname{Var}\left[T_{s}\right]$ of stochastic virtual mixed processing times T_{s}

$$
T_{s}=\sum_{j=1}^{J_{s}} \bar{v}_{s, j} \cdot T_{s, j}
$$

Important assumption: perfect correlation between $T_{s, i}$ and $T_{s, j}$!!!!!

Branch \& Bound: Lower bounds on required budget

Basic idea

(1) Start with cheapest currently possible configuration

Branch \& Bound: Lower bounds on required budget

Basic idea

(1) Start with cheapest currently possible configuration
(2) Determine numerical "gradient" of $P R()$ of $\bar{v}_{s, j}, \bar{x}_{s}$

Branch \& Bound: Lower bounds on required budget

Basic idea

(1) Start with cheapest currently possible configuration
(2) Determine numerical "gradient" of $P R()$ of $\bar{v}_{s, j}, \bar{x}_{s}$
(3) Phase I: Increase budget until $P R \geq P R^{\text {min }}$

Branch \& Bound: Lower bounds on required budget

Basic idea

(1) Start with cheapest currently possible configuration
(2) Determine numerical "gradient" of $P R()$ of $\bar{v}_{s, j}, \bar{x}_{s}$
(3) Phase I: Increase budget until $P R \geq P R^{\text {min }}$
(a) Iterate

Branch \& Bound: Lower bounds on required budget

Basic idea
(1) Start with cheapest currently possible configuration
(2) Determine numerical "gradient" of $P R()$ of $\bar{v}_{s, j}, \bar{x}_{s}$
(3) Phase I: Increase budget until $P R \geq P R^{\text {min }}$
(4) Iterate
(1) Phase II: Re-distribute current budget while $P R$ increases
(2) Phase III: Decrease budget until $P R \approx P R^{\text {min }}$
(5) Terminate when budget stops to decrease for feasible solution or when $P R^{\min }$ is not reached in Phase I

Branch \& Bound: Branching

Basic ideas

(1) Branch on fractional values machine selection and buffer size variables $\bar{v}_{s, j}, \bar{x}_{s}$

Branch \& Bound: Branching

Basic ideas

(1) Branch on fractional values machine selection and buffer size variables $\bar{v}_{s, j}, \bar{x}_{s}$
(2) Add constraints on lower and upper bounds on $\bar{v}_{s, j}, \bar{x}_{s}$

Branch \& Bound: Branching

Basic ideas
(1) Branch on fractional values machine selection and buffer size variables $\bar{v}_{s, j}, \bar{x}_{s}$
(2) Add constraints on lower and upper bounds on $\bar{v}_{s, j}, \bar{x}_{s}$
(3) Depth-first search (LIFO problem processing)

Branch \& Bound: Branching

Basic ideas
(1) Branch on fractional values machine selection and buffer size variables $\bar{v}_{s, j}, \bar{x}_{s}$
(2) Add constraints on lower and upper bounds on $\bar{v}_{s, j}, \bar{x}_{s}$
(3) Depth-first search (LIFO problem processing)

Observation: Relaxed selection variables $\bar{v}_{s, j}$ often binary, buffer variables \bar{x}_{s} never

Difficulties:

Gradient calculations

(1) Numerous constraints on the gradients

Difficulties:

Gradient calculations
(1) Numerous constraints on the gradients
(2) Rosen's projection method requires numerical solution of LSE

Difficulties:

Gradient calculations
(1) Numerous constraints on the gradients
(2) Rosen's projection method requires numerical solution of LSE
(0) PR only approximated

- Gradients only approximated

Difficulties:

Gradient calculations
(1) Numerous constraints on the gradients
(2) Rosen's projection method requires numerical solution of LSE
(0) PR only approximated
© Gradients only approximated

Steepest ascent method
(1) PR highly non-linear, frequent gradient updates
(2) Termination, numerical issues

(1) Problem and motivation

(2) Conceptual optimization model

(3) Brute force MIP model

4. LocalSolver plus flow line decomposition
(5) Elements of a Branch \& Bound approach
(6) No numerical results, but ...

An extremely preliminary conclusion

First impression from Branch \& Bound

- Methods seems to work (in principle)
- Algorithm complex and not yet stable
- First feasible solutions can be found quickly
- Bounds seem to be strong

An extremely preliminary conclusion

First impression from Branch \& Bound

- Methods seems to work (in principle)
- Algorithm complex and not yet stable
- First feasible solutions can be found quickly
- Bounds seem to be strong

Future work

- Improve stability
- Serious numerical study
- Model variants, e.g., space limitations

An extremely preliminary conclusion

First impression from Branch \& Bound

- Methods seems to work (in principle)
- Algorithm complex and not yet stable
- First feasible solutions can be found quickly
- Bounds seem to be strong

Future work

- Improve stability
- Serious numerical study
- Model variants, e.g., space limitations

Thank you!!

