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Problem and motivation

Stochastic �ow lines with alternative machines

1, 1

1, 2

1, J1

1

2, 1

2, 2

2, J2

2

S, 1

S, 2

S, JS

...

... ......

Stefan Helber Machine selection & bu�er allocation



Problem and motivation

Problem

Serial production process

Single product with target production rate PRmin

Decision I: Selection of one the alternative machines j = 1, ..., Js
with stochastic processing times Ts,j for each station s

Decision II: Capacity bk of the bu�er behind station
s = 1, ..., S − 1

Objective: Minimize required capital budget for machines and
bu�ers
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Conceptual optimization model

Conceptual model

Min =
S∑

s=1

Js∑
j=1

crMs,j · vs,j +
S−1∑
s=1

crBs · xs

Js∑
j=1

vs,j = 1, s = 1, ..., S

PR(v , x) ≥ PRmin

vs,j ∈ {0, 1}, s = 1, ..., S ; j = 1, ..., Js

xs ∈ {0, 1, 2, 3, .....}, s = 1, ..., S − 1

Di�culties: PR(v , x) non-linear, no closed-form expression, integrality
constraints on decision variables
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Conceptual optimization model

Solving the model

Dimensions:

Performance evaluation methodology

Optimization methodology

Approaches:

Simulation optimization in an LP

LocalSolver plus decomposition

Branch & Bound plus decomposition
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Brute force MIP model
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Brute force MIP model

Brute force MIP model I (court. Sophie Weiss)

Main features:

Sampling of large number of processing times dsjw for workpieces
w at stage s for machine alternative j

Propagation of starting and �nishing times XSsw and XFsw via
linear constraints

W0 work piece for warm-up phase of the line

Very general and �exible, very time-consuming

Limited usefulness, computation of reference values
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Brute force MIP model

Min =
S∑

s=1

Js∑
j=1

crMs,j · Vs,j +

S−1∑
s=1

crBs · Xs (1)

Js∑
j=1

Vs,j = 1, ∀s (2)

XSs,w +

Js∑
j=1

ds,j,w · Vs,j ≤ XFs,w , ∀s, ∀w (3)

XFs,w ≤ XSs+1,w , ∀s ≤ S − 1, ∀w (4)

XFs,w ≤ XSs,w+1, ∀s, ∀w ≤W − 1 (5)

XFS,W − XFS,W0
≤

W −W0

PRmin
(6)

XSs+1,w − XFs,w+b ≤ M · (1− Ys,b), ∀s ≤ S − 1, ∀b,∀w ≤W − b (7)

Bs∑
b=0

Ys,b = 1, ∀s ≤ S − 1 (8)

Xs =

Bs∑
b=0

b · Ys,b, ∀s ≤ S − 1 (9)
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LocalSolver plus �ow line decomposition
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LocalSolver plus �ow line decomposition

LocalSolver-Approach

Commercial software, academic licenses

Heuristic search algorithms

Combinatorial problems, discrete decision variables

Speci�c math-modeling language

APIs for C++, Python etc.

New cool feature: Native functions !!!
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LocalSolver plus �ow line decomposition

Code Example

Constraint
Js∑
j=1

Vs,j = 1, ∀s

Use of the C++ API:

// Exa c t l y one machine i s s e l e c t e d pe r s t a t i o n

f o r ( i n t i = 0 ; i < nbS t a t i o n s ; i++) {
LSExp r e s s i on nbMach ine sSe l e c t ed = MyModel . sum ( ) ;
f o r ( i n t j = 0 ; j < nbCandidateMach ines [ i ] ; j++){
nbMach ine sSe l e c t ed += X[ i ] [ j ] ;
}
MyModel . c o n s t r a i n t ( nbMach ine sSe l e c t ed == 1 ) ;
}
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LocalSolver plus �ow line decomposition

Flow line decomposition in native function

Flow line decomposition:

Each station s characterized by E[Ts ] and c2s

Decomposition into system of GI/G/1/N stopped arrival queues
(Buzacott, Liu, Shanthikumar, Manitz)

Iterative algorithm determines production rate & bu�er levels

Fast and accurate

Implemented in C++ as a LocalSolver native function

Called by LocalSolver via API during during each LocalSolver
search move
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Elements of a Branch & Bound approach

1 Problem and motivation

2 Conceptual optimization model

3 Brute force MIP model

4 LocalSolver plus �ow line decomposition

5 Elements of a Branch & Bound approach

6 No numerical results, but ...

Stefan Helber Machine selection & bu�er allocation



Elements of a Branch & Bound approach

Branch&Bound: Relaxation

Relaxation of integrality constraints

Stations mixed by fractions 0 ≤ v s,j ≤ 1 of machines

Bu�er sizes x s real-valued

Evaluation via GI/G/1/K queueing model decomposition

E[Ts ] and Var[Ts ] of stochastic virtual mixed processing times Ts

Ts =
Js∑
j=1

v s,j · Ts,j

Important assumption: perfect correlation between Ts,i and Ts,j !!!!!
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Elements of a Branch & Bound approach

Branch & Bound: Lower bounds on required

budget

Basic idea

1 Start with cheapest currently possible con�guration

2 Determine numerical �gradient� of PR() of v s,j , x s
3 Phase I: Increase budget until PR ≥ PRmin

4 Iterate

1 Phase II: Re-distribute current budget while PR increases
2 Phase III: Decrease budget until PR ≈ PRmin

5 Terminate when budget stops to decrease for feasible solution or
when PRmin is not reached in Phase I
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Elements of a Branch & Bound approach

Branch & Bound: Branching

Basic ideas

1 Branch on fractional values machine selection and bu�er size
variables v s,j , x s

2 Add constraints on lower and upper bounds on v s,j , x s
3 Depth-�rst search (LIFO problem processing)

Observation: Relaxed selection variables v s,j often binary, bu�er
variables x s never
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Elements of a Branch & Bound approach

Di�culties:

Gradient calculations

1 Numerous constraints on the gradients

2 Rosen's projection method requires numerical solution of LSE

3 PR only approximated

4 Gradients only approximated

Steepest ascent method

1 PR highly non-linear, frequent gradient updates

2 Termination, numerical issues
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No numerical results, but ...
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No numerical results, but ...

An extremely preliminary conclusion

First impression from Branch & Bound

Methods seems to work (in principle)

Algorithm complex and not yet stable

First feasible solutions can be found quickly

Bounds seem to be strong

Future work

Improve stability

Serious numerical study

Model variants, e.g., space limitations

Thank you!!
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