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Introduction

• Many tasks are completed according to subjective completion criteria
* Discretionary tasks (Hopp et al., 2007)
* Customer-intensive services (Anand et al., 2011)

• Health care, personal care, legal or financial consultancy, software
engineering, call centers

• Tradeoff Quality vs. Speed
* Fast service =⇒ Low quality /, Low waiting times ,
* Slow service =⇒ High quality ,, High waiting times /

• Time-dependent setting
* How are decisions influenced by demand changes in the future?
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Literature overview

1. Service rate decisions without impact on quality
1.1 Based on current work-in-process (George and Harrison, 2001; Stidham

and Weber, 1989)
1.2 Based on demand over finite horizon (Parlar, 1984; Alam, 1979)

2. Service rate decisions with impact on quality

Paper Queue Objective Demand Dynamics
Quality Cong.

Hopp et al. (2007) M/D/1 Exponential LS Ex. Stat.
Wang et al. (2010) M/G/c Error prob. W Q End. Stat.
Anand et al. (2011) M/M/1 Linear W S End. Stat.
Kostami and Ra-
jagopalan (2014)

M/M(t)/1 - LS End. T-d.

Our model D(t)/D(t)/c Exponential W S Ex. T-d.M(t)/M(t)/c
Cong. = Congestion measure; Ex. = Exogenous; End. = Endogenous; Stat. = Stationary;
T-d. = Time-dependent

No publication considers time-dependent demand!
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Problem description

• D(t)/D(t)/c and M(t)/M(t)/c systems
• Input:

• Arrival rates λi ∀i = 1, ..., n
• Decisions:

• Service rates µi ≤ µ ∀i = 1, ..., n
• Objective:

• Value: v(µi ) = v̄(1− e−
a
µi ) per served

costumer (Hopp et al., 2007)
* v̄ : Maximum value
* a: Sensitivity to service rate

• Waiting cost w per time unit spent in the
system
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Model formulation

1. Time-dependent model:

max Z = `

n∑
i=1

[
v̄(1− e−

a
µi )E[Thi (µ1, ..., µi )]− w E[W S

i (µ1, ..., µi )]
]

(1)

s.t. 0 < µi ≤ µ ∀i = 1, ..., n (2)
Remark:

• Numerical solution
• Analytical solution

2. Stationary model:

max Z = v̄(1− e−
a
µ )λ− w E[W S(µ)] (3)

s.t. 0 < µ ≤ µ (4)
Remark:

• A solution exists iff
{

cµ ≥ λ deterministic model
cµ > λ stochastic model

• Analytical solution exists for
{

c ≥ 1 deterministic model
c = 1 stochastic model
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Optimal solutions in the stationary system

D/D/c:

µD =

min
(
max

(
a

ln av̄λ
w
, λc

)
, µ

)
for av̄λ > w

µ otherwise.
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M/M/1 :

µS =
{
min (µ∗, µ) for av̄λ > w
µ otherwise

with µ∗ determined by
(
µ∗−λ
µ∗

)2
e−

a
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av̄λ .
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(Parameters in the figures: c = 1, v̄ = 30, a = 1, µ = 5)

Jannik Vogel, Raik Stolletz Service systems with discretionary task completion June 2017 8



default
CHAIR OF PRODUCTION MANAGEMENT 

Optimal solutions in the stationary system

D/D/c:

µD =

min
(
max

(
a

ln av̄λ
w
, λc

)
, µ

)
for av̄λ > w

µ otherwise.
0

1

2

3

4

5

6

0 1 2 3 4 5

S
e
rv

ic
e
 r

a
te

 μ

Arrival rate λ

w = 2 w = 10 w = 50

M/M/1 :

µS =
{
min (µ∗, µ) for av̄λ > w
µ otherwise

with µ∗ determined by
(
µ∗−λ
µ∗

)2
e−

a
µ∗ = w

av̄λ .
0

1

2

3

4

5

6

0 1 2 3 4 5

S
e

rv
ic

e
 r

a
te

 μ

Arrival rate λ

w = 2 w = 10 w = 50

(Parameters in the figures: c = 1, v̄ = 30, a = 1, µ = 5)
Jannik Vogel, Raik Stolletz Service systems with discretionary task completion June 2017 8



default
CHAIR OF PRODUCTION MANAGEMENT 

Optimal solutions in the stationary system (II)

Setting: M/M/1, c = 1, v̄ = 30, a = 1,w = 10, µ = 5
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Findings:
• µS ≥ µD

• High sensitivity in λ
• µS and µD no monotone function in λ
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Optimal solutions in the deterministic model

Fluid assumptions (Newell, 1971)

1. Numerical solution
Determined by solving the MINLP

2. Analytical solution for increasing demand λi

µTD
i =

min
(
max

(
a

ln av̄λi
w
, λi

c

)
, µ

)
for av̄λi > w

µ otherwise.
(5)

Finding: Optimal solution only depends on the current period!
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Stochastic SBC approach (Stolletz, 2008)

For every period i with given length `:

1. Stationary loss system
(M/M/c/c)
* Input: Artificial arrival rate
λ̃i

* Output: Utilization E[Ui ]
and backlog rate bi

2. Stationary waiting system
(M/M/c)
* Input: Modified arrival rate
λMAR

i which results in E[Ui ]
* Output: System

performance

𝑏1 

Carryover 

λ 1 = λ1 

𝑏2 

λ2 

λ 𝑖 

λ3 

λ 3 = λ3 + 𝑏2 

0 1 2 

Served  
immediately 

Artificially  
blocked 

Rates 

intervals 𝑖 

λ𝑖 
λ 2 = λ2 + 𝑏1 

Good approximations for ` = µ−1 =⇒ Calibration of the period length
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NLP for the SBC approach

max Z = `

n∑
i=1

[
v̄(1− e− a

µi )E[Thi (µ1, ..., µi )]− w E[W S
i (µ1, ..., µi )]

]
(6)

0 < µi ≤ µ ∀i = 1, ..., n (7)
1. Step b0 = 0 (8)

bi = λ̃i PB
i ∀i = 1, ..., n (9)

λ̃i = λi + bi−1 ∀i = 1, ..., n (10)

PB
i =

(λ̃i/µi )c

c!
c∑

k=0

(λ̃i/µi )k

k!

∀i = 1, ..., n (11)

E[Ui ] =
λ̃i (1− PB

i )
cµi

=
λi + bi−1 − bi

cµi
∀i = 1, ..., n (12)

2. Step λMAR
i = E[Ui ]cµi = λi + bi−1 − bi ∀i = 1, ..., n (13)

P0
i =

(
c−1∑
n=0

(λMAR
i /µi )n

n!
+

(λMAR
i /µi )c

c! · (1− λi
cµi

)

)−1

∀i = 1, ..., n (14)

E[W S
i ] =

(λMAR
i /µi )c

(c − 1)!µi (c − λMAR
i /µi )2

P0
i +

1
µi

∀i = 1, ..., n (15)
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Anticipation of demand changes: λi low

Setting: c = 1, n = 20, ` = 0.5, w = 10, v̄ = 30, a = 1,
λ(t) = 0.4 for t ≤ 5, 1 otherwise.
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Finding: Service rate changes before the demand changes!

Jannik Vogel, Raik Stolletz Service systems with discretionary task completion June 2017 15



default
CHAIR OF PRODUCTION MANAGEMENT 

Anticipation of demand changes: λi low

Setting: c = 1, n = 20, ` = 0.5, w = 10, v̄ = 30, a = 1,
λ(t) = 0.4 for t ≤ 5, 1 otherwise.

0

2

4

6

8

10

12

0 2 4 6 8 10

A
rr

iv
al

 a
n

d
 s

er
vi

ce
 r

at
e

Time
Arrival rate SBC PSA

0

1

2

3

4

5

0 2 4 6 8 10

M
o

n
e

ta
ry

 u
n

it
s

Time

Exp. served value Exp. Waiting cost

0

0.2

0.4

0.6

0.8

1

1.2

0

2

4

6

8

10

0 2 4 6 8 10

Th
ro

u
gh

p
u

t,
 U

ti
liz

at
io

n

V
al

u
e

Time

Value E[Th] E[Utilization]

Finding: Service rate changes before the demand changes!
Jannik Vogel, Raik Stolletz Service systems with discretionary task completion June 2017 15



default
CHAIR OF PRODUCTION MANAGEMENT 

Anticipation of demand changes: λi high

Setting: c = 1, n = 20, ` = 0.5, w = 10, v̄ = 30, a = 1,
λ(t) = 1 for t ≤ 5, 3 otherwise.
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Finding: Demand change leads to several service rate changes.
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Anticipation of demand changes: λi high

Setting: c = 1, n = 20, ` = 0.5, w = 10, v̄ = 30, a = 1,
λ(t) = 1 for t ≤ 5, 3 otherwise.
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Summary

Conclusion:

• Model:
• Quality-speed tradeoff
• New model: Service rate optimization with time-dependent demand

• Method: Iterative procedure for the SBC-approach
• Managerial insights

* Optimal service rate not monotone in λ
* Deterministic model: Increasing demand does not influence service rates

beforehand
* Stochastic model: Later demand influences decisions

Future research:

• Include state-dependent information
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Objective value and performance measures depending on µ

Setting: c = 1, v̄ = 30, a = 1,w = 10, µ = 5, λ1 = 0.6, λ2 = 2.17, µ∗ = 3.91

Condition for optimal µ:

ServedValue(µ)′−WaitingCost(µ)′ = 0
(16)

a
µ∗2

v̄λe−a/µ∗
= w

(λ− µ∗)2 (17) 0
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Optimal solutions for a D/D/c-system: Proof

max Z = v̄(1− e−
a
µ )λ− w

µ
(18)

Setting the first order partial derivative ∂Z
∂µ = w

µ2 (1− av̄λ
w e−

a
µ ) to zero gives

1− av̄λ
w e−

a
µ = 0. Let us first assume that av̄λ > w . The zero of the function is

found at µ′ = a
ln av̄λ

w
. Notice that for µ < µ′, ∂Z

∂µ (µ) > 0 and for µ > µ′,
∂Z
∂µ (µ) < 0. Thus, there is a maximum at µ′. Furthermore, if µ′ < λ

c , the
objective function (18) is maximized at λ

c . If µ
′ > µ, (18) is maximized at µ.

Let us now consider the special case av̄λ ≤ w . For those parameters the zero of
the first order partial derivative does not lie in A. Notice that ∂Z

∂µ (µ) > 0 for
µ ∈ A. Thus, the maximum is attained for µ = µ.
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Optimal solutions for an M/M/1-system: Proof

max Z = v̄(1− e−
a
µ )λ− w

µ− λ
(19)

Setting the first order partial derivative equal zero gives
(
µ−λ
µ

)2
e−

a
µ = w

av̄λ .
Notice that the left hand side of the equation,
f : (λ,∞)→ (0, 1), µ 7→

(
µ−λ
µ

)2
e−

a
µ is continuous and strictly monotonically

increasing. Therefore, for all av̄λ > w , a solution can be found. However, this
solution does not need to lie in A and then the optimal solution is µ, because the
first order partial derivative in µ is positive on the set (λ, µ).

Let us now consider the special case av̄λ ≤ w . For those parameters the zero of
the first order partial derivative does not lie in A. Notice that ∂Z

∂µ (µ) > 0 for
µ > λ. Thus, the maximum is attained for µ = µ.
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Fluid approximation (Newell, 1971)

• Key idea: Replace discrete stochastic arrivals by a deterministic continuum
• Queue length at the end of period i :

E[LQ,end
i ] = max{E[LQ,end

i−1 ] + `(λi − cµi ), 0} (20)

• Percentage of period i that has a positive queue length:

πi =


0 E[LQ,end

i−1 ] = 0,E[LQ,end
i ] = 0

E[LQ,end
i−1 ]

`(cµi −λi )
E[LQ,end

i−1 ] = 1,E[LQ,end
i ] = 0

1 E[LQ,end
i ] > 0

∀i = 1, ..., n (21)

• Expected average queue length in period i : E[LQ
i ] = πi

E[LQ,end
i−1 ]+E[LQ,end

i ]
2

• Expected average cycle time:

E[W S
i ] =


1
µi

E[LQ,end
i−1 ] = 0,E[LQ.end

i ] = 0
E[LQ

i ]/λi + 1
µi

E[LQ,end
i−1 ] = 1,E[LQ.end

i ] = 0
E[LQ

i ]/µi + 1
µi

E[LQ,end
i ] = 1

(22)
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MINLP for the fluid approach
E[LQ,end

0 ] = 0 (23)

E[LQ,end
i ] = E[LQ,end

i−1 ] + `(λi − E[Thi ]) ∀i (24)

E[Thi ] ≤ cµi ∀i (25)
cµi − E[Thi ] ≤ M(1− βi ) ∀i (26)

E[LQ,end
i ] ≤ Mβi ∀i (27)

βi ≤ ME[LQ,end
i ] ∀i (28)

E[LQ
i ] = πi

E[LQ,end
i−1 ] + E[LQ,end

i ]
2

∀i (29)

`cµiπi ≥ (E[LQ,end
i−1 ] + `λiπi )(1− βi )βi−1 ∀i (30)

πi ≥ βi ∀i (31)
πi ≤ βi−1 + βi ∀i (32)

E[W Q
i ] = βi−1(1− βi )

E[LQ
i ]

λi
+ βi

E[LQ
i ]

µi
∀i (33)

E[W S
i ] = E[W Q

i ] +
1
µi

∀i (34)

βi ∈ {0, 1} ∀i (35)
0 ≤ πi ≤ 1 ∀i (36)

E[LQ
i ], E[LQ,end

i ], E[W S
i ], E[Thi ] ≥ 0 ∀i (37)
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default
CHAIR OF PRODUCTION MANAGEMENT 

Optimal solution in the deterministic system: Proof idea

Let j be the smallest period with cµ < λj , n + 1 if non-existing.

(i) Consider periods i = 1, ..., j − 1 sequentially.
• Assume µi <

λi
c =⇒ Costumers left in the queue at the end of i

* Leaving costumers in the queue (even tough they could have been
served) cannot be optimal

* Reducing additional queue later on is not optimal, because of the
concave value-rate function

• Finding an optimal µi ≥ λi
c leads to the same solution as in the

stationary model.
(ii) Consider periods i = j , ..., n sequentially. Objective function is increasing in

the service rate µi . =⇒ µ is optimal.
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Iterative procedure for the SBC-approach

• Performance approximation quality depends on period length (Stolletz, 2008)
* Period length ≈ Processing time

• Optimization of processing rates =⇒ Good period length not known a priori
• Key idea: Evaluation periods with period length `eval = `

Neval
* divide decision period into multiple periods (Neval > 1) or
* unify multiple decision periods to a single larger period (Neval < 1)

• Number of decisions remains the same!
• Choose `eval such that

`

Neval
= `eval ≈

1
µ̄

=
(
1
n

n∑
i=1

µi

)−1
(38)

• Iterative procedure
Neval ← 1
do

µi ← solve problem using Neval

Neval ← `µ̄ = `
n

n∑
i=1

µi

while Neval different that in previous loop
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Deterministic system with decreasing demand

Setting: c = 1, n = 32, ` = 0.5,w = 1, v̄ = 30, a = 1

Optimal solution:
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Comment: Anticipation of demand

The future does matter!
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Impact of time-dependent decision

Setting: ` = 0.25, n = 20, λi shows single peak, w = 10, v̄ = 40, a = 1
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Objective value Z Integrated model Simulation Difference

PSA 48.09 43.69 10.08%
Fluid 139.83 45.83 205.07%
SBC 48.35 46.26 4.52%
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Optimal solution via simulation-enumeration

Setting: ` = 0.5, n = 64, λ(t) decreases at t = 16, w = 10, v̄ = 30, a = 1

(a) 4 decisions (t = 5.5, 11, 16.5, 22) (b) service rates: 2.8, ..., 4.6 (step size 0.1)
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Z E[Th] total E[W S ] total

Sim-Enumeration 216.05 55.64 16.35
SBC-Enumeration 217.85 55.76 16.85
SBC-Enumeration simulated 216.01 55.64 16.81
Difference (rel.) 0.02% 0.01% 2.75%
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