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How to match supply and demand in an uncertain
environment in manufacturing systems?

Demand

Synchronization Stage

Raw

Material
Production Syst. Buffer

Control-point policy (Gershwin, 2000),
Base-Stock Policy,
Production Authorization Card (Buzacott and Shanthikumar, 1993),
Generalized Kanban Policy (Duri et al., 2000),
Extended Kanban Control System (Liberopoulos and Dallery, 2000).
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Demand inter-arrival and service times are usually modeled
as an i.i.d. random variables

Demand

Synchronization Stage

Raw

Material
Production Syst. Buffer



The output process from a production system is shown to
be serially correlated

Empirical studies: Schomig and Mittler (1995), Inman (1999).

Analytical studies: Hendricks and McClain (1993), Tan and
Lagershausen (2016)

(Tan and Lagershausen, 2016)



How does autocorrelation impact the control of the
system?

ignoring auto-correlation in arrivals and service time leads to
significant errors in setting the input buffers and base-stock levels in
production/inventory systems.

(Dizbin, 2016)



Research questions

What is the optimal control policy of a manufacturing system with
correlated demand and service time?

How does autocorrelation impact the optimal performance measures?



Literature of the inventory management problem with
Markov-modulated demand

Paper Demand Process Lead Time Production Capacity Modeling Horizon Cost Criterion
Song and Zipkin (1993) MMPP Stochastic Infinite Continuous (Finite & Infinite) Discounted
Song and Zipkin (1996a) MMPP Stochastic Infinite Continuous (Infinite) -
Song and Zipkin (1996b) MMPP Stochastic Infinite Continuous (Infinite) -
Nasr and Maddah (2015) MM Deterministic Infinite Continuous (Infinite) Average
Bayraktar and Ludkovski (2010) MM Stochastic Infinite Continuous (Infinite) -
Muharremoglu and Tsitsiklis (2008) MM Markov Modulated Infinite Discrete (Finite & Infinite) Average and Discounted
Janakiraman and Muckstadt (2009) MM Stochastic Finite Discrete (Finite) Discounted
Sethi and Cheng (1997) MM Deterministic Infinite Discrete(Finite& Infinite) Discounted
Beyer and Sethi (1997) MMPP Deterministic Infinite Discrete(Finite) Discounted

Özekici and Parlar (1999) MMPP Deterministic Finite Discrete(Finite) Discounted
Cheng and Sethi (1999) MMPP Deterministic Finite Discrete(Finite) Discounted
Chen and Song (2001) MM Deterministic Infinite Discrete(Finite & Infinite) Average
Hu et al. (2016) MM Deterministic Infinite Discrete(infinite) Discounted
This Work MM MM Finite Continuous(finite & infinite) Average

MM: Markov Modulated Demand
MMPP: Markov Modulated Poisson Process



Model

Demand:MAP(D0,D1)

Synchronization Stage

Raw

Material
Production Syst.

MAP(S0, S1)

Buffer

Demand and Production Processes are modeled as Markov Arrival
Processes (MAP)

The system is continuously reviewed, and the state of the system is
fully observed at any time t



Problem formulation

Find a control policy π that authorizes production based on the state of
the system to minimize expected inventory and backlog costs

inf
π

V π
T (x, s) = lim

T→∞

1
T
E
[∫ T

0
C(x(t))dt |x(0) = x, s0 = s

]
, (1)

C(x(t)) =

{
−bx(t), if x(t) < 0,

hx(t), otherwise
(2)

The cost structure consists of the holding (h) and backlog costs (b).



Main result

Theorem 1

The set of state-dependent base-stock policies is optimal for the
production model with MAP arrival and production process.

ν(x(t) = x, st = s) =

{
1, if x < Zs,

0, otherwise.
(3)

where ν is the control variable,
x is the inventory level,
s is the state of the Markovian process,
and Zs is the base stock level associated with state s.



State-dependent base-stock policy
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Dynamic programming formulation of a production system
with MAP(D0,D1) arrival and exponential (µ) service
processes

Let λm = −min(D0(i, i)), and α = λm + µ

V (x, i) +
g
α

=
C(x)

α
+

∑
j∈S−{i}

P0(i, j)V (x, j) +
∑
j∈S

P1(i, j)V (x − 1, j)

+
λm + D0(i, i)

α
V (x, i) + (

µ

α
)min{V (x, i),Vn(x + 1, i)} (4)

where P0 = 1
αD0 + I and P1 = 1

αD1 and g is the average total cost.



Performance evaluation of a production control model with
state-dependent base-stock policy

Infinitesimal Generator Matrix of a Production control model with
State-Dependent Base-Stock Policy

Q =



L(m) F (m)

B(m) L(m) F (m)

B(m) L(m) F (m)

. . .
. . .

. . .

B(m−1) L(m−1) F (m−1)

. . .
. . .

. . .

B(2) L(2) F (2)

B(1) L(1) F (1)

. . .
. . .

. . .


πQ = 0

π1 = 1



Approximated generator matrix of a process with
MAP(D0,D1) demand and PH(β, S0, s) service time

Q =



D0 D1 ⊗ β
Ip ⊗ s D0 ⊕ S0 D1 ⊗ I

Ip ⊗ sβ D0 ⊕ S0 D1 ⊗ I
. . .

. . .
. . .

Ip ⊗ sβ D0 ⊕ S0 D1 ⊗ I
I
′
p ⊗ sβ D0 ⊕ S0 D1 ⊗ I

. . .
. . .

. . .

I
′
p ⊗ sβ D0 ⊕ S0 D1 ⊗ I

I ⊗ sβ D0 ⊕ S0 D1 ⊗ I
. . .

. . .
. . .

I ⊗ sβ D0 ⊕ S0 D1 ⊗ I
I ⊗ sβ − (D1 ⊗ I )G D0 ⊕ S + (D1 ⊗ I )G



(Horvath et al., 2010)



Performance measures

E [I ] =

Z (m)∑
z=0

πz(Z (m) − z)

E [B] =

∞∑
z=Z (m)+1

πz(z − Z (m))

TC = h.E [I ] + b.E [B]

P(I < 0) =

∞∑
z=Z (m)+1

πz



Experiment Design

The behavior of the performance measures in processes with

Negative Autocorrelation

Positive Autocorrelation

cv > 1

cv < 1

How Does Approximating Correlated Arrival by mean of its

First Moment (Exponential Distribution (M))

First Two Moments (C2:b Distribution)

Marginal Distribution (PH Distribution)

approximates the optimal control policy.

h = 1 b = 5
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Impact of autocorrelation on the inter-event times

Positive autocorrelations create clusters of long and short
inter-event time.

With negative autocorrelations, a short inter-event time is
followed by a long inter-event time.



Impact of negative autocorrelation on performance
measures of the system

D0 =

−1.5 1.5 0
0 −3 1.5
0 0 −1.5

 D1 =

 0 0 0
1.5 0 0
0 1.5 0



Table: Moment and autocorrelation structure of a negatively correlated process
with cv < 1

1 2 3 4 5
Moment 1.0 1.8 4.4 14.2 55.3
ith Lag AC -0.1429 0 0 0 0



Impact of negative autocorrelation on optimal inventory
levels

Table: Performance Measures of a Negatively Correlated System with cv < 1 and
Its Un-Correlated Approximations with ρ = 0.5 Controlled By State-Dependent
and State-Independent Base-Stock Policies

Z̄∗ TC Error E [B] Error E [I ] Error Pr(I < 0) Error
Opt MAP/M/1 (1,2,2) 1.9200 0.1797 1.0214 0.1089
App1 MAP/M/1 2 2.0006 4% 0.1446 -20% 1.2774 25% 0.0877 -20%
App2 PH/M/1 2 2.0006 4% 0.1446 -20% 1.2774 25% 0.0877 -20%
App3 C2:b/M/1 2 2.0006 4% 0.1446 -20% 1.2774 25% 0.0877 -20%
App4 M/M/1 2 2.0006 4% 0.1446 -20% 1.2774 25% 0.0877 -20%



Impact of negative autocorrelation on optimal inventory
levels

Table: Performance Measures of a Negatively Correlated System with cv < 1 and
Its Un-Correlated Approximations with ρ = 0.8 Controlled By State-Dependent
and State-Independent Base-Stock Policies

Z̄∗ TC Error E [B] Error E [I ] Error Pr(I < 0) Error
Opt MAP/M/1 (5,6,6) 6.1660 0.6114 3.1088 0.1543
App1 MAP/M/1 6 6.1775 0% 0.5692 -7% 3.3316 7% 0.1437 -7%
App2 PH/M/1 7 6.3155 2% 0.4255 -30% 4.1879 35% 0.1074 -30%
App3 C2:b/M/1 7 6.3155 2% 0.4255 -30% 4.1879 35% 0.1074 -30%
App4 M/M/1 8 6.6711 8% 0.3181 -48% 5.0805 63% 0.0803 -48%



Impact of positive autocorrelation on optimal inventory
levels

D0 =

−1.4964 0 0.0426
0.0033 −1.4351 1.4209

0 0 −1.5336


D1 =

1.4209 0.0329 0
0 0 0.1093

0.0533 1.4803 0



Table: Moment and autocorrelation structure of a positively correlated process
with cv < 1

1 2 3 4 5
Moment 1.1 1.95 5.0 16.4 65.0
ith Lag AC 0.1226 0.1099 0.1004 0.0918 0.0839



Impact of positive autocorrelation on optimal inventory
levels

Table: Performance Measures of a Positively Correlated System with cv < 1 and
Its Un-Correlated Approximations with ρ = 0.5 Controlled By State-Dependent
and State-Independent Base-Stock Policies

Z̄∗ TC Error E [B] Error E [I ] Error Pr(I < 0) Error
Opt MAP/M/1 (1,2,4) 2.7794 0.3077 1.2409 0.1172
App1 MAP/M/1 2 3.2454 17% 0.3967 29% 1.2617 2% 0.1359 16%
App2 PH/M/1 2 3.2454 17% 0.3967 29% 1.2617 2% 0.1359 16%
App3 C2:b/M/1 2 3.2454 17% 0.3967 29% 1.2617 2% 0.1359 16%
App4 M/M/1 2 3.2454 17% 0.3967 29% 1.2617 2% 0.1359 16%



Impact of positive autocorrelation on optimal inventory
levels

Table: Performance Measures of a Positively Correlated System with cv < 1 and
Its Un-Correlated Approximations with ρ = 0.8 Controlled By State-Dependent
and State-Independent Base-Stock Policies

Z̄∗ TC Error E [B] Error E [I ] Error Pr(I < 0) Error
Opt MAP/M/1 (11,12,19) 15.5317 1.6262 7.4006 0.1606
App1 MAP/M/1 13 15.8697 2% 1.5373 -5% 8.1829 11% 0.1518 -5%
App2 PH/M/1 7 17.8717 15% 2.8710 77% 3.5166 -52% 0.2846 77%
App3 C2:b/M/1 7 17.8717 15% 2.8710 77% 3.5166 -52% 0.2846 77%
App4 M/M/1 8 17.1643 11% 2.5864 59% 4.2320 -43% 0.2559 59%



Conclusions

We show that the optimal control policy that minimizes the
expected holding and backlog cost for a production/inventory
system with arrival and service times modeled with Markov
arrival processes is a state-dependent base-stock policy

We show how to evaluate performance measures of a production
system by using matrix analytic methods
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Conclusions

The optimal performance measures of a system with correlated
demand arrival are highly dependent on the traffic intensity of
the system, coefficient of variation, and the autocorrelation
structure of the arrival process

The state-independent base-stock policies give a good
approximation of the performance measures in systems with
negatively correlated demand. However, when the demand is
positively correlated, using a state-dependent base-stock policy
improves the performance
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Future research

What is the relation between Geometric Matrix (R,G) and
autocorrelation structure of the arrival and service process?

What is the optimal policy in systems with partially observable states?

How to use shop floor arrival and service data to control
manufacturing systems more efficiently?

How include additional types of data such as inter-failure time, and
inter-repair time in modeling?



Questions?
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