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3Introduction and State of the Art

This work focuses on the combined problem of:

• Controlling the switching off/on of machine tool for energy saving purposes;

• Controlling the admission of parts;

using buffer occupancy information from the upstream buffer.

The problem is to dynamically control the system so as to minimize discounted cost.

Arrival of Parts Departure of Parts

Not Admitted Parts

Admission
Control

Machine State
Control
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State Control 4

• The control of admission aims at reducing the congestion (in the form of jobs

waiting in the buffer) in a system.

• A cost incurs whenever a customer is rejected (or, equivalently, a reward is earned 

whenever a customer is accepted).

• Problems of this type have been studied in the literature (e.g. [1] [2] [3][4]) and it is 

shown that threshold policies are optimal.

• Also finite capacity systems can be modeled by increasing the holding cost when the 

queue length reaches the capacity.

[1] Serfozo, R.: Optimal control of random walks, birth and death processes, and queues. Adv. Appl. Probab. 13, 61–83 (1981)

[2] Stidham, S.: Optimal control of admission to a queueing system. IEEE Trans. Autom. Control 30, 705–713 (1985)

[3] Stidham, S., Weber R.: A survey of Markov decision models for control of networks of queues. Queueing Systems, 13(1), 291–314, 1993

[4] Jain, A.and Lim, A. E. B., Shanthikumar, J. G.: On the optimality of threshold control in queues with model uncertainty. Queueing Systems, 65(2),157–174 (2010)
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State Control 5

• The control of machine states for energy saving aims at reducing the amount of

energy required when the machine is not working on parts (idle).

• The service is interrupted and resumed

based on time information or on the 

buffer level information.

• Vacation queueing theory,

Dynamic Programming,

Simulation, …
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[5] M. Yadin and P. Naor. Queueing systems with removable service station. Operational Research Quarterly 14, pages 393–405, 1963.

[6] M. Mashaei and B. Lennartson. Energy Reduction in a Pallet- Constrained Flow Shop Through On/Off Control of Idle Machines. Automation

Science and Eng., IEEE Trans. on, 10(1):45–56, January 2013

[7] Q. Chang, G. Xiao, S. Biller, and L. Li. Energy Saving Opportunity Analysis of Automotive Serial Production Systems (March 2012).

Automation Science and Eng., IEEE Trans. on, 10(2):334–342, April 2013.

[8] Frigerio, N., A. Matta. 2016. Analysis on Energy Efficient Switching of Machine Tool With Stochastic Arrivals and Buffer Information.

Automation Science and Engineering, IEEE Transactions on 13(1) 238–246.

[9] Z. Jia, L. Zhang, J. Arinez, and G. Xiao. Performance Analysis of Bernoulli Serial Production Lines with Switch-On/Off Machine Control.

IEEE Conf. of Automation Science and Eng., August 24–28 2015.

[10] Frigerio N. 2016. Optimal Stochastic Switching of Machine Tools in Energy Efficient Manufacturing Systems, PhD Thesis, Politecnico di

Milano, Italy.
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State Control 6

The objective is to minimizing total discounted cost with: 

• Machine energy cost 𝑐 𝑥 with 𝑥 = machine state;

• Inventory holding cost ℎ(𝑛) where ℎ(⋅) is convex on number of parts 𝑛;

• Production reward 𝑟 ≥ 𝑟min earned at process completion.

The optimal policy is an exhaustive service discipline: 

[10] Frigerio N. 2016. Optimal Stochastic Switching of Machine Tools in Energy Efficient Manufacturing Systems, PhD Thesis, Politecnico di

Milano, Italy.

[11] Frigerio N., Shanthikumar J. G., Geng N., Matta A. Dynamic Programming for Machine Energy Control with Buffer Level Information,

under review for IISE Transaction.
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State Control 7

1) The development of a dynamic programming based model for the combined

optimization problem of controlling machine state and part admission;

2) To analyze structural properties of the control such as (with 𝑟 > 𝑟min):

 Exhaustive service;

 Parts are admitted up to 

threshold 𝑁𝑎𝑑𝑚;

 The machine is switched off when 

buffer is empty (𝑁𝑜𝑓𝑓 = 0), and it 

is switched on after 𝑁𝑢𝑝 parts 

accumulates into the system.

𝑁𝑜𝑓𝑓 = 0 ⇒ switch off

OR

𝑁𝑎𝑑𝑚

𝑁𝑎𝑑𝑚
𝑁𝑢𝑝 ⇒ switch on
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1. Perfectly reliable server;

2. Infinite downstream buffer;

3. Transitory (startup) durations are i.i.d. random variables 𝑇su ∼ 𝐸𝑥𝑝𝑜(𝛾);

4. The startup is long enough to guarantee the quality of processed parts;

5. The random variables are not affected by the control;

6. The stochastic process are independent each other;

7. Machine processing and startup cannot be interrupted by the control.

𝑇𝑖 ∼ 𝐸𝑥𝑝𝑜(𝜆)

𝑇𝑝 ∼ 𝐸𝑥𝑝𝑜 𝜇

Admission
Control

Machine State
Control
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[11] S.A. Lippman. Applying a new device in the optimization of exponential queueing system. Operation Research,

23:687–710, 1975

[12] Powell, W. 2011. Approximate Dynamic Programming. 2nd ed. John Wiley & Sons, Inc., Hoboken, NJ,USA.

[13] Puterman, M. L. 1994. Markov Decision Processes: discrete stochastic dynamic programming. John Wiley & Sons,

Inc., Hoboken, NJ, USA.

[14] Ross, S. 1983. Introduction to stochastic dynamic programming. Academic press, NY.

The control problem can be modeled as Discrete Time Markov Decision Process

problem with the uniformization technique (Lippman [15]):

• A countable number of states;

• Random time between transitions;

• Observable system state;

• The feasible control action set depends on system state and event occurrence. 
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Model (part I)

Denote a period k when k transitions are left.

Decision Epochs are the occurrences of event 𝒚𝒌 at the end of period k: 

𝑦𝑘 = ቐ

A − part 𝐀rrival
D − part 𝐃eparture

C − startup 𝐂ompletion

System State (𝒏𝒌, 𝒙𝒌) observed at the beginning of period k:

• 𝒏𝒌 = number of parts in the system;

• 𝒙𝒌 = machine state 𝑥 ∈ {1,2,3,4}.

𝑦𝑘+1 𝑦𝑘

(𝑛𝑘, 𝑥𝑘)

𝒈(𝒏𝒌, 𝒙𝒌)
Stage cost

Period 𝑘Period 𝑘 + 1 Period 𝑘 − 1

time
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Model (part II)

Control Actions 𝒂𝒌, 𝒖𝒌 ∈ 𝑨(𝒏𝒌, 𝒙𝒌, 𝒚𝒌) that is the set of feasible actions depending on 

system state (𝒏𝒌, 𝒙𝒌) and event instance 𝒚𝒌.

Actions are taken at the end of period k after the event is observed.

• Upon arrival, a part is admitted if 𝒖𝒌 = 1, otherwise 𝒖𝒌 = 0

• The machine state is controlled according to machine model with 𝒂𝒌

e.g. if 𝑥𝑘 = 1 ⇒ 𝑎𝑘 ∈ {1,3}

System Dynamics is assumed to be stationary.

𝑦𝑘+1 𝑦𝑘

(𝑛𝑘, 𝑥𝑘)
Actions: 𝑎𝑘 , 𝑢𝑘
New state: 𝑛𝑘−1, 𝑥𝑘−1

time

Period 𝑘Period 𝑘 + 1 Period 𝑘 − 1

𝒈(𝒏𝒌, 𝒙𝒌)
Stage cost
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System Dynamics

System dynamics is assumed to be stationary.

Given the current system state (𝑛𝑘 , 𝑥𝑘) the instance of event 𝑦𝑘, 

and the control actions (𝑎𝑘 , 𝑢𝑘), the next system state 

(𝑛𝑘+1, 𝑥𝑘+1) is as follows:

Where action 𝑎𝑘 is in a feasible ation set (Table 1).

Dynamic Programming Approach

Model (part III)

1
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Model (part IV)

• Machine energy cost 𝑐 𝑥 where c 4 > c 2 > c(1) and c 3 > c(2);

• Inventory holding cost ℎ 𝑛 where the convexity holds:

ℎ 𝑛 + 2 − ℎ 𝑛 + 1 ≥ ℎ 𝑛 + 1 − ℎ(𝑛)

• Rejection cost 𝑐𝑟 𝑛 ≥ 0 when the part is rejected;

• Production reward 𝑟 ≥ 0 earned at process completion.

o It represents the valuable reward for the production of each part;

o It may be correlated to the downstream-system (as r increases, the control is

prone to be more productive).

The infinite-horizon optimal discounted cost is: 𝐽 = 

𝑘=1

∞

min
𝑎𝑘,𝑢𝑘

𝐄[𝑓 𝑛𝑘𝑥𝑘 , 𝑎𝑘 , 𝑢𝑘 ]
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Model (part V)

ቚ𝑣𝑘+1
∗ 𝑛, 4

𝑛>1
=
ℎ 𝑛 + 𝑐(4)

𝜂

Given a discount rate 𝛼 , 𝑣𝑘+1
∗ 𝑛𝑘+1, 𝑥𝑘+1 denotes the discounted cost when k+1

transitions are left:

For example:

+
𝜆

𝜂
min

𝑢={0,1}
𝑣𝑘
∗ 𝑛 + 𝑢, 4

+
𝜇

𝜂
−𝑟 + min

𝑎={1,2,4}
𝑣𝑘
∗ 𝑛 − 1, 𝑎

+
𝜂 − 𝜆 − 𝜇 − 𝛼

𝜂
𝑣𝑘
∗ 𝑛, 4

Stage Cost

Cost – To – Go 

Arrival

Departure

Uniformization
term

Note: 𝜂 = 𝜆 + 𝜇 + 𝛾 + 𝛼

𝑣𝑘+1
∗ (𝑛𝑘+1, 𝑥𝑘+1) = 𝑔(𝑛𝑘+1, 𝑥𝑘+1) + E 𝑎𝑘+1,𝑢𝑘+1 𝑣𝑘

∗ 𝑛𝑘 , 𝑥𝑘 𝑛𝑘+1, 𝑥𝑘+1

lim
𝑘→∞

𝑣𝑘
∗(𝑛, 𝑥) = 𝑣∗ 𝑛, 𝑥 = 𝐽
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Experimental Setting

• Numerical data are obtained with value iteration algorithm in Matlab©:

o 20’000 iterations (difference between iterations smaller than 0.1%)

o Finite number of states: 𝑛 = 0, 1,… 200

• Special case: 𝑟 < 𝑟𝑚𝑖𝑛 ⇒ no production advantage (no admission / no production)

• Sensitivity analysis is performed. Detailed results for:

o Holding cost ℎ 𝑛 = 𝑤𝑞𝑛

o Arrival rate 𝜆

The optimality of threshold based policies is shown.

The advantage of combined control is shown by comparing four policies:

P1 – No control (admit all, machine no controlled)

P2 – Machine state control (admit all)

P3 – Admission control (machine no controlled)

P4 – Machine state control and admission control
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Holding cost 𝒉 𝒏 = 𝒘𝒒𝒏

𝑐𝑜𝑢𝑡 = 0
𝑐𝑜𝑛 = 1

𝑐𝑠𝑢 = 1.91
𝑐𝑤𝑜𝑟𝑘 = 5.18

𝑡𝑝 = 1

𝑡𝑎 = 1.25
𝑡𝑠𝑢 = 0.23
𝑟 = 20
𝑐𝑟 = 0

𝛼 = 10−5

Advantage 
from admission control

Advantage 
from state control
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Holding cost 𝒉 𝒏 = 𝒘𝒒𝒏

𝑐𝑜𝑢𝑡 = 0
𝑐𝑜𝑛 = 1

𝑐𝑠𝑢 = 1.91
𝑐𝑤𝑜𝑟𝑘 = 5.18

𝑡𝑝 = 1

𝑡𝑎 = 1.25
𝑡𝑠𝑢 = 0.23
𝑟 = 20
𝑐𝑟 = 0

𝛼 = 10−5

Machine Control (switch off/on)Admitted Parts
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With 𝜆 < 0.8, savings are related to the machine control (switch off/on). For high 
utilization, savings are related to the admission control that limits the queue length.

𝑐𝑜𝑢𝑡 = 0
𝑐𝑜𝑛 = 1

𝑐𝑠𝑢 = 1.91
𝑐𝑤𝑜𝑟𝑘 = 5.18
𝑤𝑞 = 0.07

Numerical Analysis

Arrival Rate with 𝑤𝑞 > 0

𝑡𝑝 = 1

𝑡𝑠𝑢 = 0.23
𝑟 = 15
𝑐𝑟 = 0

𝛼 = 10−5

𝜇 = 1

Advantage 
from admission control

Advantage 
From state control
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Arrival Rate with 𝑤𝑞 > 0

𝑐𝑜𝑢𝑡 = 0
𝑐𝑜𝑛 = 1

𝑐𝑠𝑢 = 1.91
𝑐𝑤𝑜𝑟𝑘 = 5.18
𝑤𝑞 = 0.07

𝑡𝑝 = 1

𝑡𝑠𝑢 = 0.23
𝑟 = 15
𝑐𝑟 = 0

𝛼 = 10−5

Machine Control (switch off/on)Admitted Parts
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Arrival Rate with 𝑤𝑞 = 0

 All parts are admitted

𝑐𝑜𝑢𝑡 = 0
𝑐𝑜𝑛 = 1

𝑐𝑠𝑢 = 1.91
𝑐𝑤𝑜𝑟𝑘 = 5.18

𝑤𝑞 = 0

𝑡𝑝 = 1

𝑡𝑠𝑢 = 0.23
𝑟 = 15
𝑐𝑟 = 0

𝛼 = 10−5

Total Discounted Cost

Machine Control (switch off/on)
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1) A dynamic programming methodology has been used to model a machine tool with

start/stop feature and requiring a startup, that is working in a production

environment where the admission of parts is controlled.

2) Integration of productivity and sustainability criteria in the operation of

manufacturing systems:

• Structural property have been shown numerically;

• Results are aligned with the common practice.

a) Future results will be devoted to:

• Prove analytically the results of this work;

• Adding a control of machine service rate;

• Multiple Machine “Sleeping” States.

Conclusions
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Thank You for Your Attention

Any question or remark?

nicla.frigerio@polimi.it
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