

Vehicle Configuration in an Integrated Material Handling System with State-dependent Batch Transfer

Hui-Yu ZHANG; Shao-Hui XI; Qing-Xin CHEN; Xiang LI; Ai-Lin YU

Guangdong University of Technology

Department of Industrial Engineering Guangzhou, CHINA

June 12, 2017

Outline

- In many manufacturing environments, production systems (workstations) are interconnected with material handling systems (e.g. automated guided vehicles).
- Performance modeling of such integrated systems is a complex problem because of the state-dependency on the arrival and departure processes.
- Estimating the number of vehicles required is one of the most important issues at the tactical level of the design and control processes of such systems.

- Existing research on the design and analysis of production systems and material handling systems lacks an in-depth consideration of the integration of these two areas.
- Queueing (network) models:
 - Isolated queueing models with finite buffers and bulk arrival or service.
 - Closed queueing network models *without batch transfer*.
 - Open queueing network models with batch transfer and *infinite buffers*.

Open queueing network with finite buffers

and state-dependent batch transfer

June 12, 2017

2.1 System description & assumptions

2 2.1 System description & assumptions

Service discipline: "First-come-first-served"

Loading discipline: "Either empty (buffer) or full (vehicle)"

State-dependent batch transfer: the transferred batch size depends on the current number of jobs at the buffers and the capacity of transporters.

Unloading discipline: "Wait until empty (vehicle)"

• External jobs arrival : Po

: Poission Process (λ).

- Processing times at each workstation : Exponentially distributed (μ_i) .
- Pure travel times of vehicles (forward or backward)

 Independent and exponentially distributed (τ_i).

Exponential transporting rate of vehicles : $v_i = (2\tau_i)^{-1}$.

2.2 Optimization problem formulation

Vehicle Configuration Problem

 $X^* = arg min \ Q(X) = arg min \ \sum_{i=1}^{M-1} cx_i$,(To minimize the total investment cost)s.t. $\Theta(X) \ge \Theta_{\min}$,
 $T(X) \le T_{\max}$.(The mean throughput constraint)T(X) \le T_{\max}.(The mean sojourn time constraint)

- $x_i :=$ The number of vehicles in the *i*th fleet, $x_i \in N^+$.
- X := The vector of vehicle configuration, $X = \{x_i\}$.
- c := The unit price of a vehicle.
- Q := Total investment cost.
- Θ := System mean throughput.
- T := System mean sojourn time.

No closed-form functions are available for $\Theta(X)$ and T(X).

Decomposition of State Space Method

Proposed performance evaluation method

3.1 Queueing network model

3

Proposed performance evaluation method

3.2 Formulation of the sub-systems

I. State Space

	Status	Meaning
	1	Busy Trip : Moving downstream toward the drop-off location.
	1-	Drop-off Idling : Waiting at the drop-off location.
	0	Empty Trip : Moving upstream toward the pick-up location.
	0+	Pick-up Idling : Waiting at the pick-up location.
	1 = -1	
	$S_{ic}\{($	$(n_{ic}, s_i);$
Node <i>i</i> c	($0 \le n_{ic} \le C_i$; n_{ic} := the number of jobs in the vehicle.
		$s_i = 1, 1^-, 0, 0^+$ $s_i :=$ the status of the vehicle.
	S (
	ι σ _{ib} ί	$(n_{ib}, s_i),$
Node <i>i</i> b		$0 \le n_{ib} \le Nr_i$; n_{ic} := the number of jobs at the rear buffer.
	L	$s_i = 1, 0, 0^+$ $s_i :=$ the status of the related vehicle.

Status of vehicles

June 12, 2017

Node *ia* $(i \neq 1)$ $S_{ia} \{ (n_{ia}, s_{i-1}, w_i); \\
0 \leq n_{ia} \leq Nf_i + 1, \quad n_{ic} := \text{the number of jobs at the node.} \\
S_{i-1} = 1, 0, \quad s_{i-1} := \text{the status of the related vehicle.} \\
w_i = 1, 0\} \quad w_i := \text{the condition of the server.} \\
S_{ia} \{ (r_{i-1}, s_{i-1}, w_i); \\
0 \leq r_{i-1} \leq C_{i-1}, \quad r_{i-1} := \text{the number of remaining jobs in the vehicle.} \\
S_{i-1} = 1^-, \quad s_{i-1} := \text{the status of the related vehicle.} \\
w_i = 1, 0\} \quad w_i := \text{the condition of the server.} \end{cases}$

- **D** Processes of transition between states: Exponential process
- **Continuous-Time Markov Chains** (CTMC) for each sub-system
- A fleet of *X* equivalent vehicles can be approximated by a single vehicle traveling *X*-times faster (Srinivasan et al. 1994).

II. State Transition

3

 n_{ib} := the current number of jobs at the buffer. C_i := the maximum capacity of the vehicle.

(1) State Transition: Empty Trip \rightarrow *Pick-up Idling*

(2) State Transition: Empty Trip \rightarrow Busy Trip

June 12, 2017

II. State Transition

③ State Transition: Pick-up Idling \rightarrow *Busy Trip*

3.2 Formulation of the sub-systems

 n_{ic} := the # of jobs that the vehicle carried. k := the # of vacancies at the buffer.

4 State Transition: Busy trip \rightarrow *Empty Trip*

5 State Transition: Busy trip \rightarrow *Drop-off idling*

6 State Transition: Drop-off idling \rightarrow *Empty Trip*

June 12, 2017

3

III. Rate Balance Equations

$$2v_{i} \times \pi_{S_{ic}(0,0)} = \sum_{n_{ic}=1}^{C_{i}} \left\{ 2v_{i} \left[1 - \sum_{k=1}^{n_{ic}} p_{(i+1)a}(k) \right] \times \pi_{S_{ic}(n_{5},0)} \right\} + \mu_{i+1}^{*} \times \pi_{S_{ic}(1,1^{-})};$$
(1)

$$\lambda_{ib}^* \times \pi_{S_{ic}(0,0^+)} = 2v_i p_{ib}(0) \times \pi_{S_{ic}(0,0)};$$
⁽²⁾

$$2v_{i} \times \pi_{S_{ic}(1,1)} = 2v_{i}p_{i(b,c)}(1) \times \pi_{S_{ic}(0,0)} + \lambda_{ib}^{*} \times \pi_{S_{ic}(0,0^{*})};$$
(3)

Node *i*c

3

$$2v_i \times \pi_{S_{ic}(n_{ic},1)} = 2v_i p_{i(b,c)}(n_{ic}) \times \pi_{S_{ic}(0,0)}, 2 \le n_{ic} \le C_i;$$
(4)

$$\mu_{i+1}^* \times \pi_{S_{ic}(n_{ic},1^-)} = \sum_{z=n_{ic}}^{C_i} \left\{ 2v_i p_{(i+1)a}(z-n_{ic}) \times \pi_{S_{ic}(n_{ic},1)} \right\} + \mu_{i+1}^* \times \pi_{S_{ic}(n_{ic}+1,1^-)}, 1 \le n_{ic} < C_i; \quad (5)$$

$$\mu_{i+1}^* \times \pi_{S_{ic}(C_i, 1^-)} = 2\nu_i p_{(i+1)a}(0) \times \pi_{S_{ic}(C_i, 1)}.$$
(6)

$$\pi_j \mathbf{P}_j = \mathbf{0}$$

 \mathbf{P} := transition matrix of node *j*.

 π_i := steady-state probabilities of node *j*.

Proposed performance evaluation method

3.3 Iterative algorithm for solution

Step 1. Initialization for each node

- Steady-state probabilities $\pi_i^{(0)} = 0$.
- Probability parameters for other nodes = 0.

Step 2. Iteration loops for each node

- State space $S_i\{\cdot\}$.
- Rate balance equations.
- Equivalent transition matrix $\mathbf{P}_{i}^{(r)}$.
- Solve $\pi_{j}^{(r)}\mathbf{P}_{j}^{(r)}=\mathbf{0}$ using Gauss-Seidel method.
- Update the probability parameters for other nodes.

• Steady-state probabilities of each node.

3

r=r+1

Proposed performance evaluation method

3.4 Computational experiments for performance analysis

	м	1		$Nf_i =$	C			Tł	roughput (9)	Soj	ourn time (T)	-
	M	λ	μ_i	Nr_i	C_i	v_i	x_i	Sim.	Approx.	Δ%	Sim.	Approx.	∆%	_
							1	0.397	0.423	6.61	23.765	21.763	-8.42	-
							2	0.659	0.661	0.27	12.657	12.973	2.50	
	2	0.8	1.0	4	2	0.2	3	0.718	0.724	0.83	9.918	10.589	6.76	
							4	0.725	0.737	1.69	8.996	9.231	2.62	
Experim							5	0.729	0.741	1.58	8.664	8.182	-5.56	
.							1	0.698	0.653	-6.50	36.575	33.829	-7.51	- 7
							2	0.902	0.849	-5.94	23.410	25.728	9.90	
Source	4	1.0	1.2	5	3	0.3	3	0.919	0.913	-0.60	19.911	22.052	10.75	Drain
Input=8;							4	0.920	0.931	1.13	18.306	19.651	7.35	Output=811
							5	0.923	0.934	1.22	17.619	16.934	-3.89	_
							1	1.023	0.953	-6.83	43.420	41.694	-3.98	_
							2	1.136	1.107	-2.54	28.766	32.031	11.35	
	6	1.2	1.5	6	4	0.4	3	1.134	1.148	1.25	24.140	27.070	12.14	
							4	1.138	1.151	1.10	22.492	24.312	8.09	
							5	1.142	1.151	0.83	22.051	20.608	-6.54	_

M := the number of workstations.

 $x_i :=$ the number of vehicles in each fleet.

3

3 3.4 Computational experiments for performance analysis

(a) Throughput curves

(b) Sojourn time curves

	Throughput $\Theta(X)$	Sojourn time T(X)
$X\uparrow$	1	\downarrow

Optimization algorithm for vehicle configuration

4.1 Algorithm procedure

Seepicie Ronfiguration Brokkim Mopetenen Integer Programming MHRing-search

June 12, 2017

Optimization algorithm for vehicle configuration

4.2 Computational experiments for vehicle configuration

M	V	Tł	roughput ((9)	Sojourn time (T)		
M	Aopt	Sim.	Approx.	Δ%	Sim.	Approx.	Δ%
2	3	1.693	1.701	0.46	6.691	6.477	-3.20
3	43	1.690	1.695	0.32	11.289	12.199	8.06
4	3 4 3	1.689	1.663	-1.54	16.331	17.194	5.29
5	3 4 4 3	1.686	1.663	-1.34	20.750	21.933	5.70
6	3 4 3 4 3	1.688	1.662	-1.55	26.204	27.081	3.35
7	4 4 3 3 4 3	1.691	1.701	0.62	31.189	31.779	1.89
8	4 4 3 3 3 4 3	1.695	1.701	0.34	36.952	36.782	-0.46
9	4 4 3 3 3 3 4 3	1.694	1.701	0.42	40.251	41.754	3.73
10	4 4 3 3 3 3 3 4 3	1.696	1.701	0.30	44.265	46.708	5.52

External arrival rate:	λ =1.8 units/hour,	Vehicle capacity:	$C_i=3$ units,
Processing rate:	μ_i =2.1 units/hour,	Vehicle transporting rate:	$v_i=0.35$ units/hour,
Buffer capacity:	$Nf_i = Nr_i = 7$ units,	Vehicle unit cost:	<i>c_i</i> =\$ 12,000.

4

June 12, 2017

- An integrated production and material handling serial system with statedependent batch transfer is considered.
- A decomposition of state space method is proposed for system performance modeling.
- A vehicle configuration problem is solved by the discrete polyblock method embedded with the decomposition of state space method.
- Experiments show the accuracy and effectiveness of the proposed approaches.

Vehicle Configuration in an Integrated Material Handling System

with State-dependent Batch Transfer

Thank you!

Hui-Yu ZHANG; Shao-Hui XI; Qing-Xin CHEN; Xiang LI; Ai-Lin YU

Guangdong University of Technology

Department of Industrial Engineering Guangzhou, CHINA

June 12, 2017

SMMSO 2017

The end