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Stability of Queueing Networks

• Jackson (1957)

Product-form solutions of Jackson networks.

• Lu and Kumar (1991)

A general network can be unstable even if the usual traffic 

condition is satisfied.

• Dai (1995)

A queueing network is stable if its corresponding fluid 

model is stable.
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• General Servers in Queueing Networks

• Stability Conditions for Multiclass Queueing 

Networks
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A Lu-Kumar Network
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a m1 = 0.2 m2 = 0.6

m3 = 0.1m4 = 0.6

Station A Station B

• 𝛼 = 1, 𝜌𝐴 = 0.8, 𝜌𝐵 = 0.7.

• Priority: 1<4, 2>3. Non-preemptive.



WIP at Classes 2 and 4
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• The system is unstable although 𝜌𝐴 < 1, 𝜌𝐵<1! 

 The usual traffic condition is not sufficient for stability!
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A Tandem Queue

• Priority: 1<4, 2>3. Non-preemptive.
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Equivalence of the Two Networks
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Rethinking the Meaning of Servers…

• Should servers be defined based on the physical 

configurations in queueing networks?

The essence of physical stations is that at most one class at 

the station can receive service at any time…

The usual traffic condition is sufficient for single server 

queues. Why it fails when considering networks? 

The meaning of servers may be different in the context of 

networks…
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Mutual Blocking

• Mutual Blocking

Under a given dispatching policy, the classes suffer mutual 

blocking if they cannot receive service simultaneously.
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A class set 𝒞 suffers mutual blocking if the following two conditions are satisfied almost 

surely: 

(a) lim𝑡→∞ 𝑚  𝑡  𝑅 𝑖(𝑡)𝑖∈𝒞 ≠ 0  / 𝑚  𝑡  𝑅 𝑖(𝑡)𝑖∈𝒞 ≠ 0  = 0, and 

(b) If  𝑚𝑖/𝛼𝑖𝑖∈𝒞 < 1, then lim𝑡→∞ 𝑚  𝑡  𝑅𝑖(𝑡)𝑖∈𝒞 = 0  / 𝑡 < 1 −   𝑚𝑖/𝛼𝑖𝑖∈𝒞  . 



General Servers

• Any class set suffering mutual blocking is a general 

server.
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{2, 4} is a general server
<

<



Effective Classes of a General Server

• Effective Number of Classes

While at most one class can receive service at any time in a 

physical station, a general server can have 𝑀 effective

classes.

11

For a general server 𝑆, its effective number of classes is 𝑀 (denoted as 𝐸𝐹 𝑆 = 𝑀) if the 

following two conditions are satisfied almost surely: 

(a) If 𝐼 ⊆ 𝑆 and  𝐼 ≥ 𝑀 + 1, then 

 lim𝑡→∞ 𝑚  𝑡  𝑅 𝑖 𝑡 ≠ 0𝑖∈𝐼   /𝑚  𝑡  𝑅 𝑖 𝑡 𝑖∈𝑆 ≠ 0  = 0, and 

(b) There exists 𝐼 ⊆ 𝑆 and  𝐼 = 𝑀, s.t. 

lim𝑡→∞ 𝑚  𝑡  𝑅 𝑖 𝑡 ≠ 0𝑖∈𝐼   /𝑚  𝑡  𝑅 𝑖 𝑡 𝑖∈𝑆 ≠ 0  > 0. 



General Servers

• Hasenbein (1997)
– A six-class network. Priority: 1<4; 2>5; 3<6. Preemptive.
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Traffic Intensity of a General Server

Physical Stations General Server

Effective Number 1 𝑀

Load 𝐿 = ෍
𝑘: 𝜎 𝑘 =𝑗

𝜆𝜏 𝑘 𝑚𝑘 𝐿𝑆 = ෍
𝑘∈𝑆

𝜆𝜏 𝑘 𝑚𝑘

Traffic Intensity 𝜌 = ෍
𝑘: 𝜎 𝑘 =𝑗

𝜆𝜏 𝑘 𝑚𝑘 /1 𝛲𝑆 = ෍
𝑘∈𝑆

𝜆𝜏 𝑘 𝑚𝑘 /𝑀
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Stability Conditions for Queueing Networks

• Stability Conditions

Under a given dispatching policy, a queueing network is 

pathwise stable if and only if the effective traffic intensity 

of every general server does not exceed one, i.e.,∀ 𝑆 ∈ 𝒮, 

𝑃𝑆 ≤ 1.

The usual traffic condition becomes sufficient if all general 

servers are considered.
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Instability of the Lu-Kumar Network

• The traffic intensity of general server{2, 4}

𝜌 2,4 = 1.2>1.

Server {2, 4} does not have sufficient capacity.

System is unstable.
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Sensitivity of General Servers
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• Is {2, 4} a general server in the previous Lu-Kumar 

network?

Non-Preemptive Preemptive

𝛼 = 0.85 × √

𝛼 = 1 √ √

𝛼~𝑈 0.8,0.9 × √

𝛼~exp 0.85 √ √



Queue Times at a General Server
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Similar to physical stations, the jobs at
a general server have their specific
queue time distributions!



Conclusion

• Focusing on physical stations is not enough when 

analyzing queueing networks.

• General servers dominate the stability of queueing 

networks.

• The structure of general servers is sensitive to the 

system configuration.

• Jobs at general servers have their specific queue time 

distributions.
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Future Research

• General Servers

Develop general algorithms to find general servers.

Determine the effective number of classes.

• Queue times

Study the queue time distributions for general servers.

• Stability Type
Positive Harris Recurrence.
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