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Stability of Queueing Networks

• Jackson (1957)

Product-form solutions of Jackson networks.

• Lu and Kumar (1991)

A general network can be unstable even if the usual traffic 

condition is satisfied.

• Dai (1995)

A queueing network is stable if its corresponding fluid 

model is stable.

2



Outline
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• Stability Conditions for Multiclass Queueing 

Networks
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A Lu-Kumar Network
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a m1 = 0.2 m2 = 0.6

m3 = 0.1m4 = 0.6

Station A Station B

• 𝛼 = 1, 𝜌𝐴 = 0.8, 𝜌𝐵 = 0.7.

• Priority: 1<4, 2>3. Non-preemptive.



WIP at Classes 2 and 4
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• The system is unstable although 𝜌𝐴 < 1, 𝜌𝐵<1! 

 The usual traffic condition is not sufficient for stability!
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A Tandem Queue

• Priority: 1<4, 2>3. Non-preemptive.
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Equivalence of the Two Networks
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Rethinking the Meaning of Servers…

• Should servers be defined based on the physical 

configurations in queueing networks?

The essence of physical stations is that at most one class at 

the station can receive service at any time…

The usual traffic condition is sufficient for single server 

queues. Why it fails when considering networks? 

The meaning of servers may be different in the context of 

networks…
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Mutual Blocking

• Mutual Blocking

Under a given dispatching policy, the classes suffer mutual 

blocking if they cannot receive service simultaneously.
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A class set 𝒞 suffers mutual blocking if the following two conditions are satisfied almost 

surely: 

(a) lim𝑡→∞ 𝑚  𝑡  𝑅 𝑖(𝑡)𝑖∈𝒞 ≠ 0  / 𝑚  𝑡  𝑅 𝑖(𝑡)𝑖∈𝒞 ≠ 0  = 0, and 

(b) If  𝑚𝑖/𝛼𝑖𝑖∈𝒞 < 1, then lim𝑡→∞ 𝑚  𝑡  𝑅𝑖(𝑡)𝑖∈𝒞 = 0  / 𝑡 < 1 −   𝑚𝑖/𝛼𝑖𝑖∈𝒞  . 



General Servers

• Any class set suffering mutual blocking is a general 

server.
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a m1 = 0.2 m2 = 0.6

m3 = 0.1m4 = 0.6

Station A Station B

{2, 4} is a general server
<
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Effective Classes of a General Server

• Effective Number of Classes

While at most one class can receive service at any time in a 

physical station, a general server can have 𝑀 effective

classes.
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For a general server 𝑆, its effective number of classes is 𝑀 (denoted as 𝐸𝐹 𝑆 = 𝑀) if the 

following two conditions are satisfied almost surely: 

(a) If 𝐼 ⊆ 𝑆 and  𝐼 ≥ 𝑀 + 1, then 

 lim𝑡→∞ 𝑚  𝑡  𝑅 𝑖 𝑡 ≠ 0𝑖∈𝐼   /𝑚  𝑡  𝑅 𝑖 𝑡 𝑖∈𝑆 ≠ 0  = 0, and 

(b) There exists 𝐼 ⊆ 𝑆 and  𝐼 = 𝑀, s.t. 

lim𝑡→∞ 𝑚  𝑡  𝑅 𝑖 𝑡 ≠ 0𝑖∈𝐼   /𝑚  𝑡  𝑅 𝑖 𝑡 𝑖∈𝑆 ≠ 0  > 0. 



General Servers

• Hasenbein (1997)
– A six-class network. Priority: 1<4; 2>5; 3<6. Preemptive.
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l m1 = 0.1 m2 = 0.6

m5 = 0.2m4 = 0.6

Station A Station B Station C

m3 = 0.1

m6 = 0.6

General Server {2, 4, 6}, E({2, 4, 6})= 2



Traffic Intensity of a General Server

Physical Stations General Server

Effective Number 1 𝑀

Load 𝐿 = 
𝑘: 𝜎 𝑘 =𝑗

𝜆𝜏 𝑘 𝑚𝑘 𝐿𝑆 = 
𝑘∈𝑆

𝜆𝜏 𝑘 𝑚𝑘

Traffic Intensity 𝜌 = 
𝑘: 𝜎 𝑘 =𝑗

𝜆𝜏 𝑘 𝑚𝑘 /1 𝛲𝑆 = 
𝑘∈𝑆

𝜆𝜏 𝑘 𝑚𝑘 /𝑀
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Stability Conditions for Queueing Networks

• Stability Conditions

Under a given dispatching policy, a queueing network is 

pathwise stable if and only if the effective traffic intensity 

of every general server does not exceed one, i.e.,∀ 𝑆 ∈ 𝒮, 

𝑃𝑆 ≤ 1.

The usual traffic condition becomes sufficient if all general 

servers are considered.
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Instability of the Lu-Kumar Network

• The traffic intensity of general server{2, 4}

𝜌 2,4 = 1.2>1.

Server {2, 4} does not have sufficient capacity.

System is unstable.
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Sensitivity of General Servers
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• Is {2, 4} a general server in the previous Lu-Kumar 

network?

Non-Preemptive Preemptive

𝛼 = 0.85 × √

𝛼 = 1 √ √

𝛼~𝑈 0.8,0.9 × √

𝛼~exp 0.85 √ √



Queue Times at a General Server
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Job mean queue time at server 2, 4 in the Lu-Kumar network 

Similar to physical stations, the jobs at
a general server have their specific
queue time distributions!



Conclusion

• Focusing on physical stations is not enough when 

analyzing queueing networks.

• General servers dominate the stability of queueing 

networks.

• The structure of general servers is sensitive to the 

system configuration.

• Jobs at general servers have their specific queue time 

distributions.

18



Future Research

• General Servers

Develop general algorithms to find general servers.

Determine the effective number of classes.

• Queue times

Study the queue time distributions for general servers.

• Stability Type
Positive Harris Recurrence.
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