Stability Conditions for Multiclass Queueing Networks

Kan Wu, Yichi Shen

Presented by Yichi Shen yshen006@e.ntu.edu.sg

1

Stability of Queueing Networks

• Jackson (1957)

Product-form solutions of Jackson networks.

• Lu and Kumar (1991)

A general network can be unstable even if the usual traffic condition is satisfied.

• Dai (1995)

A queueing network is stable if its corresponding fluid model is stable.

Outline

- An Unstable Lu-Kumar Network
- Mutual Blocking
- General Servers in Queueing Networks
- Stability Conditions for Multiclass Queueing Networks

A Lu-Kumar Network

4

- $\alpha = 1, \rho_A = 0.8, \rho_B = 0.7.$
- Priority: 1<4, 2>3. Non-preemptive.

WIP at Classes 2 and 4

The system is unstable although ρ_A < 1, ρ_B<1!
 ➤ The usual traffic condition is not sufficient for stability!

A Tandem Queue

• Priority: 1<4, 2>3. Non-preemptive.

Equivalence of the Two Networks

Rethinking the Meaning of Servers...

- Should servers be defined based on the physical configurations in queueing networks?
 - The essence of physical stations is that at most one class at the station can receive service at any time...
 - The usual traffic condition is sufficient for single server queues. Why it fails when considering networks?
 - The meaning of servers may be different in the context of networks...

Mutual Blocking

• Mutual Blocking

Under a given dispatching policy, the classes suffer mutual blocking if they cannot receive service simultaneously.

A class set C suffers mutual blocking if the following two conditions are satisfied almost surely:

- (a) $\lim_{t\to\infty} m(\{t \mid \prod_{i\in\mathcal{C}} \dot{R}_i(t) \neq 0\}) / m(\{t \mid \sum_{i\in\mathcal{C}} \dot{R}_i(t) \neq 0\}) = 0$, and
- (b) If $\sum_{i \in \mathcal{C}} m_i / \alpha_i < 1$, then $\lim_{t \to \infty} m(\{t \mid \sum_{i \in \mathcal{C}} R_i(t) = 0\}) / t < 1 (\sum_{i \in \mathcal{C}} m_i / \alpha_i)$.

General Servers

• Any class set suffering mutual blocking is a *general server*.

Effective Classes of a General Server

• Effective Number of Classes

➤ While at most one class can receive service at any time in a physical station, a general server can have *M effective* classes.

For a general server S, its effective number of classes is M (denoted as EF(S) = M) if the

following two conditions are satisfied almost surely:

(a) If $I \subseteq S$ and $|I| \ge M + 1$, then

 $\lim_{t \to \infty} m(\{t \mid \prod_{i \in I} \dot{R}_i(t) \neq 0\}) / m(\{t \mid \sum_{i \in S} \dot{R}_i(t) \neq 0\}) = 0, \text{ and }$

(b) There exists $I \subseteq S$ and |I| = M, s.t.

 $\lim_{t \to \infty} m(\{t \mid \prod_{i \in I} \dot{R}_i(t) \neq 0\}) / m(\{t \mid \sum_{i \in S} \dot{R}_i(t) \neq 0\}) > 0.$

General Servers

- Hasenbein (1997)
 - A six-class network. Priority: 1<4; 2>5; 3<6. Preemptive.

General Server $\{2, 4, 6\}, E(\{2, 4, 6\})=2$

Traffic Intensity of a General Server

	Physical Stations	General Server
Effective Number	1	М
Load	$L = \sum_{k: \sigma(k)=j} \lambda_{\tau(k)} m_k$	$L_S = \sum\nolimits_{k \in S} \lambda_{\tau(k)} m_k$
Traffic Intensity	$\rho = \sum_{k:\sigma(k)=j} \lambda_{\tau(k)} m_k / 1$	$P_S = \sum_{k \in S} \lambda_{\tau(k)} m_k / M$

Stability Conditions for Queueing Networks

- Stability Conditions
 - ➤ Under a given dispatching policy, a queueing network is pathwise stable if and only if the effective traffic intensity of every general server does not exceed one, $i.e., \forall S \in S$, $P_S \leq 1$.
 - The usual traffic condition becomes sufficient if all general servers are considered.

Instability of the Lu-Kumar Network

- The traffic intensity of general server{2, 4}
 - ▷ $ρ_{{2,4}} = 1.2>1.$
 - > Server $\{2, 4\}$ does not have sufficient capacity.
 - ≻ System is unstable.

Sensitivity of General Servers

• Is {2, 4} a general server in the previous Lu-Kumar network?

	Non-Preemptive	Preemptive
$\alpha = 0.85$	×	
lpha=1		
$\alpha \sim U(0.8, 0.9)$	×	
$\alpha \sim \exp(0.85)$		

Queue Times at a General Server

Conclusion

- Focusing on physical stations is not enough when analyzing queueing networks.
- General servers dominate the stability of queueing networks.
- The structure of general servers is sensitive to the system configuration.
- Jobs at general servers have their specific queue time distributions.

Future Research

General Servers

Develop general algorithms to find general servers.
Determine the effective number of classes.

• Queue times

 \succ Study the queue time distributions for general servers.

Stability Type ➢ Positive Harris Recurrence.

Thank You! Any Questions?

Dai, J. (1995). "On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models". *The Annals of Applied Probability*, 49-77.
Hasenbein, J.J. (1997). "Necessary conditions for global stability of multiclass queueing networks. *Operations Research Letters*, **21** (2): 87-94.
Jackson, J.R. (1957). "Networks of Waiting Lines". *Operations Research*, **5** (4): 518–521.
Lu, S.H. and P. Kumar (1991). "Distributed scheduling based on due dates and buffer priorities". *IEEE Transactions on Automatic Control*, **36** (12): 1406-1416.

