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Stability of Queueing Networks

 Jackson (1957)
» Product-form solutions of Jackson networks.

e Luand Kumar (1991)

» A general network can be unstable even if the usual traffic
condition is satisfied.

« Dal (1995)

» A queueing network is stable if its corresponding fluid
model Is stable.
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General Servers in Queueing Networks
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A Lu-Kumar Network

(04 m; = 0.2 m, = 0.6
my = 0.6 ms = 0.1
Station A Station B

e a=1,p, =0.8, pg =0.7.
 Priority: 1<4, 2>3. Non-preemptive.
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WIP at Classes 2 and 4
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» The system is unstable although p, < 1, pg<1!
» The usual traffic condition is not sufficient for stability!
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A Tandem Queue
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m; = 0.2

Share One Worker

[

(2)—

m, = 0.6

|

(3)—

m;=0.1

m, = 0.6

Y

Share One Power Supply

 Priority: 1<4, 2>3. Non-preemptive.
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Equivalence of the Two Networks
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Share Or}e Worker
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Share One Power Supply

(04 ml = 02 mz = 06
m, = 0.6 m5; = 0.1
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Rethinking the Meaning of Servers...

 Should servers be defined based on the physical
configurations in queueing networks?

» The essence of physical stations is that at most one class at
the station can receive service at any time...

» The usual traffic condition is sufficient for single server
queues. Why it fails when considering networks?

» The meaning of servers may be different in the context of
networks. ..
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Mutual Blocking

« Mutual Blocking

» Under a given dispatching policy, the classes suffer mutual
blocking if they cannot receive service simultaneously.

A class set C suffers mutual blocking if the following two conditions are satisfied almost
surely:
@) lim, e m({t|[Ticc R: (t) # 0})/ m({t| Xiec R:(t) # 0}) = 0, and

(b) If Yieem;/a; < 1,then lim, . m({t| XiecRi(t) =0} /t <1 — Xiecmi/a;).
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General Servers

» Any class set suffering mutual blocking iIs a general
server.

o m, = 0.2 ///////{/;;::;;:::>
7

m, = 0.6 ~1 ms=01

Station A Station B

v

{2, 4} i1s a general server
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Effective Classes of a General Server

o Effective Number of Classes

» While at most one class can receive service at any time in a
physical station, a general server can have M effective
classes.

For a general server S, its effective number of classes is M (denoted as EF(S) = M) if the
following two conditions are satisfied almost surely:
@ If 1SS and |I| =M + 1, then
lim,_o, m({¢t| [Tie; R:(®) # 0})/m({t| Ties R:(t) # 0}) = 0, and
(b) Thereexists I €S and |I| = M, s.t.

lim, o, m({t|ITie; R: (£) # 0})/m({t| Ties Ri(£) # 0}) > 0.
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General Servers

» Hasenbein (1997)

— A six-class network. Priority: 1<4; 2>5; 3<6. Preemptive.

Station A Station B Station C
A | m=01 @ m,;= 0.1
\/
m Mg = 0.2 @
N———— \/

General Server {2, 4, 6}, E({2, 4, 6})=2
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Traffic Intensity of a General Server

Physical Stations General Server
Effective Number 1 M
Load L = Z Ay Ls = Z A iy Mk
k: o(k)=j kES
Traffic Intensity o = 2 Aegomy /1 p = Z Aoty /M
k:o(k)=j keS
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Stability Conditions for Queueing Networks

« Stability Conditions

» Under a given dispatching policy, a queueing network is
pathwise stable if and only if the effective traffic intensity
of every general server does not exceed one, 1.e.,V S € §,
Ps < 1.

» The usual traffic condition becomes sufficient if all general
servers are considered.
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Instability of the Lu-Kumar Network

 The traffic intensity of general server{2, 4}
» P24y = 1.2>1.
» Server {2, 4} does not have sufficient capacity.
» System Is unstable.
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Sensitivity of General Servers

* Is {2, 4} a general server in the previous Lu-Kumar
network?

Non-Preemptive  Preemptive

a = 0.85 X V
«=1 v v
a~U(0.8,0.9) X N
a~exp(0.85) N N
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Queue Times at a General Server

12 -
10 -
Similar to physical stations, the jobs at
(V]
E 8 - a general server have their specific
S queue time distributions!
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Utilization

Job mean queue time at server {2, 4} in the Lu-Kumar network
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Conclusion

 Focusing on physical stations Is not enough when
analyzing queueing networks.

» (General servers dominate the stability of queueing
networks.

» The structure of general servers is sensitive to the
system configuration.

 Jobs at general servers have their specific queue time
distributions.
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Future Research

e General Servers

» Develop general algorithms to find general servers.
» Determine the effective number of classes.

e Queue times
» Study the queue time distributions for general servers.

 Stability Type

> Positive Harris Recurrence.
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