1/18

Performance Evaluation of Milkrun-Supplied Flow Lines

Julia Mindlina, Horst Tempelmeier

Department of Supply Chain Management and Production University of Cologne

11th Conference on Stochastic Models of Manufacturing and Service Operations 1 Problem Statement

- 2 Modeling Approaches
- 3 Numerical Study

4 Conclusion

Problem Statement		
•00		

A milkrun-supplied flow line

Figure 1: Milkrun-supplied flow line with i = 1, ..., M machines

- Workpieces are matched with milkrun material for processing at m_i
- Machine-specific order up-to level S_i of milkrun material mr_i
- Uncapacitated milkrun supply happens every r time periods
- Starving and blocking of m_i refers to workpieces and milkrun material
- Milkrun shortages interrupt workpiece flow and milkrun material demand

Numerical Study

Research questions

Evaluation

- What is the fill rate of milkrun material supply for a given flow line configuration?
- 2 What is the impact of milkrun supply shortage on the throughput of the production system?

Optimization

- What are the minimal milkrun storage areas subject to target milkrun supply fill rate?
- 2 What is the cost-minimal allocation of milkrun storage areas and buffers subject to target throughput?

Numerical Study

Related literature and research gap

Related literature

- Transport consolidation: Özden (2011), Schwarz et al. (2015), ...
- Supplied flow lines: Bukchin and Meller (2005), Weiss et al. (2017), ...
- Handling: Kovacs (2011), Faccio et al. (2013), Alnahhal and Noche (2014), ...
- Vehicle Routing: Kilic et al. (2012), Satoglu and Sahin (2013), Meyer (2015), ...
- Flow line evaluation: Lagershausen (2013), Li and Meerkov (2009), ...

Proposal of 2 new evaluation approaches

- Flow line output as basis for calculation of milkrun supply fill rate
- Production rate as function of milkrun supply and flow line configuration

Numerical Study

1. Approach: fill rate of milkrun supply

1. Markov chain approach: times between processing starts TBPS_i

- Closed flow line with general processing times and finite buffers
- Calculate TBPS_i with Markov chain approach by Lagershausen (2013)
- Problem size is limited due to Markov chain approach of TBPS_i
- → Hypothesis that TBPS_i~ gamma-distributed cannot be rejected for test data set using Kolmogoroff-Smirnov test and Chi-Square test

2. Counting process: demand for milkrun material during replenishment time

- Probability distribution of number of processing starts during the replenishment time *r*: $P\{N(r) = n\} = P\{Y_n \le r\} P\{Y_{n+1} \le r\}$
- Whereby $Y_n = \sum_{j=0}^{''} TBPS_{ij} \forall i$ denotes the cumulative time until the occurrence of the *n*th processing start

 \rightarrow Basis for α -fill rate calculation (= prob. for no milkrun material shortages)

Numerical Study

Conclusion O

2a. Approach: production rate of two-machine line

Modeling approach and conventions according to Li and Meerkov (2009)

- Discrete time slots (= cycle time of machines)
- Machine m_i is up during time slot with probability $p_i \rightarrow$ time-dependent failures
- Buffer capacity $b_1 = 1, ..., N$ and milkrun storage area $mr_i = 1, ..., S_i, i \in \{1, 2\}$
- Blocking before service
- First machine never starved, last machine never blocked
- Machine states are determined at the beginning and buffer states at the end of each time slot

Figure 2: Milkrun-supplied two-machine line

< 臣 ト 臣 の Q (や 7/18

Numerical Study

Conclusion O

2a. Approach: production rate of two-machine line

Generate transition probability matrix

- States of the system are modeled through:
 - State of the buffer between the machines b_{1;0,...,N}
 - States of milkrun storage areas mr_{1;0,...,S1} and mr_{2;0,...,S2}
 - Time-dependence in relation to replenishment period r
- State space consists of $(N + 1) * (S_1 + 1) * (S_2 + 1) * r$ states
- Transition probabilities expressed through p₁ and p₂
- Extension to milkrun-supplied three-machine line follows the same approach with $(N_1 + 1) * (N_2 + 1) * (S_1 + 1) * (S_2 + 1) * (S_3 + 1) * r$ states

Reduction of the number of states

- In replenishment period: milkrun material equals order up-to level S
- Minimum milkrun material: order up-to level time counter (S t)
- Maximum milkrun material: order up-to level time counter * machine availability * safety factor (S t * p * sf)
- $\rightarrow\,$ State reduction can amount to 50% of state number in dependence of milkrun storage area size

Numerical Study

Conclusion O

2a. Approach: production rate of two-machine line

Computation

- Transition matrix generation: VB.Net → most computational effort!
- Numerical solution: MATLAB → eigs-function to calculate the eigenvector for the largest eigenvalue of a sparse stochastic matrix
- \rightarrow Derive steady-state probabilities: $b_{1;0}$, $b_{1;N}$, $mr_{1;0}$, $mr_{2;0}$

Performance measures of two-machine line

 $PR = P[m_2 \text{ is up at the beginning of a time slot} \\ \cap \text{ buffer is not empty at the end of previous time slot} \\ \cap 2^{nd} \text{ milkrun buffer is not empty at the end of previous time slot}] \\ = p_2 * (1 - Pb_{1;0} - Pmr_{2;0} + Pb_{1;0} * Pmr_{2;0}) = p_2 * (1 - P^S) \\ = P[m_1 \text{ is up at the beginning of a time slot} \\ \cap \text{ buffer is not full at the beginning of this time slot} \\ = p_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * (1 - P^B) \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * (1 - P^B) \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * (1 - P^B) \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * (1 - P^B) \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * (1 - P^B) \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * (1 - P^B) \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * (1 - P^B) \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} * Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * [1 - (1 - P^B) + Pmr_{2;0}] \\ = P_1 * [1 - (1 - p_2) * Pb_{1;N} - p_2 * Pb_{1;N} + Pmr_{2;0}] * (1 - Pmr_{1;0}) = p_1 * [1 - (1 - P^B) + Pmr_{2;0}] \\ = P_1 * [1 - (1 - p_2) * Pmr_{2;0}] * [1 - (1 - Pmr_{1;0}) = p_1 *$

Numerical Study

Conclusion O

2b. Approach: production rate of M > 2-machine line

Modeling approach according to Li and Meerkov (2009)

Backward: aggregate each two last machines of the line into a single Bernoulli machine

- Use (2a) to calculate probability for full buffers and empty milkrun material P^B
- Calculate virtual production rate $p_i^{backward} = p_i * [1 P^B(p_{i+1}^{backward}, p_i^{forward}, b_i)]$
- Exception for boundary condition $p_M = p_M^{backward}$

Forward: aggregate each first machine with aggregated version of the rest of the line into single Bernoulli machine

- Use (2a) to calculate probability for empty buffers or empty milkrun material P^S
- Calculate virtual production rate $p_i^{forward} = p_i * [1 P^S(p_{i-1}^{forward}, p_i^{backward}, b_{i-1})]$
- Exception for boundary condition $p_1 = p_1^{forward}$

 \rightarrow Repeat forward and backward aggregation until production rate converges

Numerical Study

Conclusion O

2b. Approach: production rate of M > 2-machine line

Figure 3: 1st iteration: backward and foward aggregation of 4-machine line

- Recursive calculation of virtual production rates: boundary machines (in this example 1 and 4) are not starved respectively blocked by workpieces, but disrupted by milkrun.
- Approach can also be applied to special case: $M \ge 2$ machines where only the 1st machine is supplied by (r, S)-policy, application as in Weiss et al. (2017).

11/18

Numerical Study

2b. Approach: production rate of M > 2-machine line

Figure 4: 2nd iteration: backward aggregation of 4-machine line

To investigate: milkrun extension does not seem to cause problems with the algorithm's convergence proved by Li and Meerkov (2009)

Numerical Study

Performance measures of milkrun-supplied 2-machine line vs. S_2

Throughput grows with the order up-to level S as long as there is milkrun supply shortage.

Figure 5: Performance measures of 2^{nd} machine versus milkrun order up-to level S_2 , input parameters: $S_1 = 5$, $p_1 = p_2 = 0.8$, $b_1 = 1$, r = 5

Performance measures of milkrun-supplied 2-machine line vs. b1

Throughput growth due to increasing buffer size is limited by milkrun parameters.

Figure 6: Performance measures of 2^{nd} machine versus buffer capacity b_1 , input parameters: $S_1 = S_2 = 5$, $p_1 = p_2 = 0.8$, r = 6

	Numerical Study	
	00000	

Computation time for milkrun-supplied 2-machine line

Approach rather fits small-scale supply consolidation of flow lines. Computation time due to transition matrix generation-solved within seconds!

$b_1, r, S = S_1 = S_2$		Computation time in mm:ss	No of States (after reduction)	
	$b_i = 1, r = 3, S = 2$	00:00	34	
	$b_i = 1, r = 4, S = 3$	00:01	96	
	$b_i = 1, r = 6, S = 5$	00:57	272	
	$b_i = 1, r = 7, S = 6$	00:54	270	
	$b_i = 1, r = 8, S = 7$	03:32	368	
	$b_i = 2, r = 3, S = 2$	00:00	51	
	$b_i = 2, r = 4, S = 3$	00:04	144	
	$b_i = 2, r = 5, S = 4$	00:07	162	
	$b_i = 2, r = 6, S = 5$	05:14	408	
	$b_i = 3, r = 3, S = 2$	00:00	68	
	$b_i = 3, r = 4, S = 3$	00:14	192	
	$b_i = 3, r = 5, S = 4$	03:50	378	

Table 1: Computation time for 2-machine line with $p_1 = p_2 = 0.8$

Computations performed on an Intel(R) Core(TM) i7-4800 MQ CPU with 2.7 GHz and 8 GB RAM =

15/18

Numerical Study

Conclusion O

Performance measures of milkrun-supplied 2-machine line

Insights

- Throughput rises with the order up-to level S (and decreasing replenishment interval r) as long as there is milkrun material shortage
- Throughput rises with increasing buffer size b but milkrun material parameters may limit the growth
- Opposite trend of state probabilities for empty buffer and empty milkrun material
- Throughput is limited to $PR^{max} = \frac{S_i^{min}}{r}$ where S_i^{min} is the minimum order up-to level within the flow line
- Milkrun parameter ratio S_i/r leads to different probabilities of empty milkrun material (e.g. S_i/r = 2/3 vs. S_i/r = 4/6)
- Evaluation approach is limited to small-scale supply consolidation

Numerical Study

Quality of throughput approximation for M > 2 milkrun-supplied lines

Approximation quality is better for higher replenishment intervals r and larger buffers b_i .

Number of Machines <i>i</i> , p_i , b_i , S_i , $r \forall i$	PRApprox	PR _{Sim}	PR _{Sim} – PR _{Approx} PR _{Sim}
$i = 3, p_i = 0.8, b_i = 3, S_i = 4, r = 10$	0.40	0.40	0.00%
$i = 3, p_i = 0.8, b_i = 3, S_i = 3, r = 4$	0.67	0.66	-1.52%
$i = 3, p_i = 0.8, b_i = 3, S_i = 2, r = 3$	0.61	0.61	0.00%
$i = 3, p_i = 0.8, b_i = 3, S_i = 1, r = 2$	0.47	0.47	0.00%
$i = 3, p_i = 0.5, b_i = 1, S_i = 1, r = 2$	0.25	0.25	0.00%
$i = 3, p_i = 0.8, b_i = 1, S_i = 1, r = 2$	0.42	0.44	4.55%
$i = 3, p_i = 0.9, b_i = 1, S_i = 1, r = 2$	0.46	0.48	4.17%
$i = 4, p_i = 0.8, b_i = 1, S_i = 1, r = 2$	0.41	0.42	2.38%
$i = 5, p_i = 0.8, b_i = 1, S_i = 1, r = 2$	0.41	0.41	0.00%
$i = 7, p_i = 0.8, b_i = 1, S_i = 1, r = 2$	0.40	0.40	0.00%
$i = 15, p_i = 0.8, b_i = 1, S_i = 1, r = 2$	0.39	0.38	-2.63%
$i = 3, p_i \in \{0.8, 0.6, 0.9\}, b_i = 1, S_i = 1,$	0.39	0.39	0.00%
r = 2			
$i = 4, p_i \in \{0.8, 0.6, 0.9, 0.7\}, b_i = 1, S_i = 1,$	0.37	0.38	2.63%
r = 2			
$i = 5, p_i \in \{0.7, 0.8, 0.9, 0.8, 0.7\}, b_i = 1,$	0.40	0.40	0.00%
$S_i = 1, r = 2$			
$i = 7, p_i \in \{0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95\},\$	0.34	0.33	-3.03%
$b_i = 1, S_i = 1, r = 2$			

Table 2: Quality of aggregation procedure for M > 2 milkrun-supplied lines

Summary

- Milkrun material shortages change workpiece flow and the demand for milkrun material $\rightarrow \alpha$ -fill rate as performance measure
- Production rate is determined by:
 - \blacksquare either flow line configuration \rightarrow no milkrun shortages
 - or milkrun parameters \rightarrow maximum production rate is limited to $\frac{S_i^{min}}{r}$
- ightarrow Milkrun supply can only restrict the production rate of a flow line

Future research

- Fast evaluation approach for M > 2 milkrun-supplied line → approximation or simulation of milkrun-supplied 2-machine line?
- Solve optimization problems
 - Minimize milkrun storage areas subject to target milkrun supply fill rate
 - In case of milkrun material shortages: find cost-optimal milkrun material and buffer capacity subject to target throughput

- Alnahhal, Mohammed, Bernd Noche. 2014. Capacity planning in in-plant milk run system. International Journal of Service and Computing Oriented Manufacturing 1(3) 197 – 210.
- Bukchin, Yossi, Russel D. Meller. 2005. A space allocation algorithm for assembly line components. *IIE Transactions* **37** 51 61.
- Faccio, Maurizio, Mauro Gamberi, Alessandro Persona. 2013. Kanban number optimisation in a supermarket warehouse feeding a mixed-model assembly system. *International Journal of Production Research* **51**(10) 2997 3017.
- Kilic, Huseyin Selcuk, M. Bulent Durmusoglu, Murat Baskak. 2012. Classification and modeling for in-plant milk-run distribution systems. *International Journal of Advanced Manufacturing Technology* **62** 1135 – 1146.
- Kovacs, Andras. 2011. Optimizing the storage assignment in a warehouse served by milkrun logistics. *International Journal of Production Economics* **133**(1) 312 318.
- Lagershausen, Svenja. 2013. Performance Analysis of Closed Queueing Networks. Springer-Verlag Berlin Heidelberg.
- Li, Jingshan, Semyon M. Meerkov. 2009. *Production Systems Engineering*. Springer US.
- Meyer, Anne. 2015. Milk run design: Definitions, concepts and solution approaches. Ph.D. thesis, Karlsruher Institut für Technologie.
- Özden, Eda. 2011. Discrete time analysis of consolidated transport processes. Ph.D. thesis, Karlsruhe Institute of Technology.

Satoglu, Sule Itir, I. Ethem Sahin. 2013. Design of a just-in-time periodic material

Numerical Study

supply system for the assembly lines and an application in electronics industry. *International Journal of Advanced Manufacturing Technology* **65** 319 – 332.

- Schwarz, Justus Arne, Judith Stoll née Matzka, Eda Özden. 2015. A general model for batch building processes under the timeout and capacity rules. *Annals of Operations Research* 231(1) 5 – 31.
- Weiss, Sophie, Andrea Matta, Raik Stolletz. 2017. Optimization of buffer allocations in flow lines with limited supply. *IISE Transactions* doi:http://www.tandfonline.com/doi/full/10.1080/24725854.2017.1328751.