Considering Sequence-Dependent Stochasticity in Production Schedules

Michael Manitz

```
    Tel.: (+49 203) 379-1443
E-Mail:michael.manitz@uni-due.de
    Duisburg/Essen University
Faculty of Business Administration (Mercator School of Management)
    Department of Technology and Operations Management
        Professor for Production & Supply Chain Management
            Lotharstr. }6
                        4 7 0 5 7 \text { Duisburg}
                        GERMANY
                            http://www.msm.uni-due.de/pui
```

Joint work with:

- Frank Herrmann (OTH Regensburg)
- Maximilian Munninger (Duisburg/Essen University)

The situation in production planning \& control:

A (simpliest) example 2 Stages

A (simpliest) example 2 Stages

Index Sets

$\mathcal{K} \ldots 3$ products: $k=\mathrm{A} 1$ and $k=\mathrm{B} 1$ and $k=\mathrm{C} 1$
$\mathcal{N}_{k} \ldots$ the components k that are needed for the final production process;

$$
\mathcal{N}_{\mathrm{A} 2}=\{\mathrm{A} 1\}, \mathcal{N}_{\mathrm{B} 2}=\{\mathrm{B} 1\}, \mathcal{N}_{\mathrm{C} 2}=\{\mathrm{C} 1\}, \mathcal{N}_{\mathrm{A} 1}=\mathcal{N}_{\mathrm{B} 1}=\mathcal{N}_{\mathrm{C} 1}=\emptyset
$$

\mathcal{J}... 2 bottleneck machines whose limited capacity concerns

Parameters

$d_{k t} \quad$... demand for product k in period t
$s_{k} \quad$... setup costs for product k
$h_{k} \quad$... holding costs for product k
$\mathrm{tb}_{j k} \ldots$ processing time per unit for product k on machine j
$\operatorname{tr}_{j k} \ldots$ setup time for product k on machine j
$b_{j t} \quad \ldots$ available capacity of machine j in period t
$z_{k} \quad \ldots$ pre-specified lead time for product k

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot q_{k t}+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Why Stochasticity in a Deterministic Model ?

Why the implementation of the production schedules from a deterministic optimization model leads to stochastic results?
[Even if all the parameters are assumed to be deterministic!]

- sequencing rules
- sequencing constraints

The results of their application later on are not known during the roughcut capacity planning (big-bucket model) and, hence, are unpredictable and-finally-stochastic.

The Backlog matters.

Augmenting the planned lead times-with or without doing anything-is the wrong answer.

SBC: Stationary Backlog-Carryover (Stolletz (2008))

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system !
- Update the arrival rate λ_{t} for the next period!

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system !
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \tilde{\lambda}_{t}=\lambda_{t}+\widetilde{\lambda}_{t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{t-1}$

$$
(t=1, \ldots, T)
$$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \tilde{\lambda}_{k t}=\lambda_{k t}+\widetilde{\lambda}_{k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{k, t-1}$

$$
(k \in \mathcal{K} ; t=1, \ldots, T)
$$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \widetilde{\lambda}_{j k t}=\lambda_{j k t}+\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1} \quad(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot q_{k t}+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot\left(q_{k t}+U_{j k t}\right)+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \widetilde{\lambda}_{j k t}=\lambda_{j k t}+\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1} \quad(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \widetilde{\lambda}_{j k t}=\lambda_{j k t}+\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1}$
$(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$
$\Longrightarrow U_{j k t}=\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1}$
$(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \widetilde{\lambda}_{j k t}=\lambda_{j k t}+\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1}$
$(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$
$\Longrightarrow U_{j k t}=\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1}$
$(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$

The arrival rate $\lambda_{j k t}$ depends on $q_{k t}$.

$$
(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)
$$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob [Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \widetilde{\lambda}_{j k t}=\lambda_{j k t}+\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\operatorname{Backlog}]_{j k, t-1}$
$(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$
$\Longrightarrow U_{j k t}=\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1}$

$$
(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)
$$

The arrival rate $\lambda_{j k t}$ depends on $q_{k t}$.
We take the rates over the planning horizon from the given workload

$$
D_{k}=\sum_{t=1}^{T} d_{k t}
$$

How to estimate the (expected) amount of backlog?

We take the rates over the planning horizon from the given workload

$$
D_{k}=\sum_{t=1}^{T} d_{k t}
$$

How to estimate the (expected) amount of backlog?

We take the rates over the planning horizon from the given workload

$$
\begin{align*}
D_{k} & =\sum_{t=1}^{T} d_{k t} \cdot \\
\Longrightarrow \lambda_{j k} & =\frac{\left(D_{k}+\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot d_{i t}\right) \cdot \mathrm{tb}_{j k}}{\sum_{t=1}^{T} b_{j t}}-\mathrm{tr}_{j k}
\end{align*} \quad(j \in \mathcal{K})
$$

How to estimate the (expected) amount of backlog?

We take the rates over the planning horizon from the given workload

$$
\begin{array}{rlr}
D_{k}= & \sum_{t=1}^{T} d_{k t} \cdot & (k \in \mathcal{K}) \\
\Longrightarrow \lambda_{j k}=\frac{\left(D_{k}+\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot d_{i t}\right) \cdot \operatorname{tb}_{j k}}{\sum_{t=1}^{T} b_{j t}}-\operatorname{tr}_{j k} & (j \in \mathcal{J} ; k \in \mathcal{K}) \\
\Longrightarrow \mu_{j k}=\frac{\sum_{t=1}^{T} b_{j t}}{\left(D_{k}+\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot d_{i t}\right) \cdot \operatorname{tb}_{j k}+\lambda_{j k} \cdot \operatorname{tr}_{j k}} & (j \in \mathcal{J} ; k \in \mathcal{K})
\end{array}
$$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \widetilde{\lambda}_{j k t}=\lambda_{j k t}+\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1}$
$(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$
$\Longrightarrow U_{j k t}=\widetilde{\lambda}_{j k, t-1} \cdot \operatorname{Prob}[\text { Backlog }]_{j k, t-1}$
$(j \in \mathcal{J} ; k \in \mathcal{K} ; t=1, \ldots, T)$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \tilde{\lambda}_{j k}=\lambda_{j k}+\tilde{\lambda}_{j k} \cdot \operatorname{Prob}[\text { Backlog }]_{j k}$
$\Longrightarrow U_{j k}=\widetilde{\lambda}_{j k} \cdot \operatorname{Prob}[\text { Backlog }]_{j k}$

$$
\begin{aligned}
& (j \in \mathcal{J} ; k \in \mathcal{K}) \\
& (j \in \mathcal{J} ; k \in \mathcal{K})
\end{aligned}
$$

SBC: Stationary Backlog-Carryover (Stolletz (2008))

- Determine the blocking probability Prob[Backlog] for an $M_{t} / M_{t} / 1$ loss queueing system!
- Update the arrival rate λ_{t} for the next period!
$\Longrightarrow \tilde{\lambda}_{j k}=\lambda_{j k}+\tilde{\lambda}_{j k} \cdot \operatorname{Prob}[\text { Backlog }]_{j k}$

$$
\Longrightarrow U_{j k}=\widetilde{\lambda}_{j k} \cdot \operatorname{Prob}[\text { Backlog }]_{j k}
$$

$$
\begin{aligned}
& (j \in \mathcal{J} ; k \in \mathcal{K}) \\
& (j \in \mathcal{J} ; k \in \mathcal{K}) \\
& (j \in \mathcal{J} ; k \in \mathcal{K})
\end{aligned}
$$

$\Longrightarrow \operatorname{Prob}[\text { Backlog }]_{j k}=\frac{\lambda_{j k}}{\lambda_{j k}+\mu_{j k}}$

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot\left(q_{k t}+U_{j k t}\right)+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot\left(q_{k t}+U_{j k}\right)+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot q_{k t}+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

What about considering reduced capacity supply ?

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot q_{k t}+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t}-V_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

14
13
12
11
10
9
8
7

14
13
12
11
10
9
8
7

A Clearing Function might help.

A Clearing Function might help.

Production-quantity limit:

$$
w_{k t}=q_{k t}-X\left(q_{k t}\right)
$$

$$
(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Effective capacity loss:

$$
V_{j t}=\sum_{k \in \mathcal{K}} w_{k t} \cdot \mathrm{tb}_{j k}
$$

$$
(j \in \mathcal{J} ; t=1,2, \ldots, T)
$$

What about considering reduced capacity supply ?

MLCLSP

Minimize costs $\quad Z=\sum_{k \in \mathcal{K}} \sum_{t=1}^{T}\left(h_{k} \cdot y_{k t}+s_{k} \cdot \gamma_{k t}\right)$
subject to:
Initial inventory $y_{k 0}$ given due to a rolling planning horizon.
Demand in period t (inventory balance):

$$
y_{k, t-1}+q_{k, t-z_{k}}-\sum_{i \in \mathcal{N}_{k}} a_{k i} \cdot q_{i t}-y_{k t}=d_{k t} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Capacities in period t :

$$
\sum_{k \in \mathcal{K}}\left(\operatorname{tb}_{k j} \cdot q_{k t}+\operatorname{tr}_{k j} \cdot \gamma_{k t}\right) \leq b_{j t}-V_{j t} \quad(j \in \mathcal{J} ; t=1,2, \ldots, T
$$

Considering setups if $q_{k t}>0$:

$$
q_{k t}-M \cdot \gamma_{k t} \leq 0 \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

Ranges:

$$
q_{k t} \geq 0 ; y_{k t} \geq 0 ; y_{k T}=0 ; \gamma_{k t} \in\{0,1\} \quad(k \in \mathcal{K} ; t=1,2, \ldots, T)
$$

A Clearing Function might help.

A Clearing Function might help.

Clearing Functions

MLPLSP

MLPLSP

Too complicated!

MLPLSP

Too complicated!

- computational times

MLPLSP

Too complicated!

- computational times
- practical application

We can find better schedules with less tardiness: $\sim 50 \%$ reduction.

Conclusion

We can find better schedules with less tardiness: $\sim 50 \%$ reduction. We have more production-in-advance and, hence, more inventory.

We can find better schedules with less tardiness: ~ 50% reduction. We have more production-in-advance and, hence, more inventory. We cannot guarantee a feasible solution for the scheduling problem.

