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A (simpliest) example 2 Stages

Index Sets

K ... 3 products: k = A1 and k = B1 and k = C1

Nk ... the components k that are needed for the final production process;

NA2 = {A1}, NB2 = {B1}, NC2 = {C1}, NA1 = NB1 = NC1 = ∅
J ... 2 bottleneck machines whose limited capacity concerns

Parameters

dkt ... demand for product k in period t

sk ... setup costs for product k

hk ... holding costs for product k

tbjk ... processing time per unit for product k on machine j

trjk ... setup time for product k on machine j

bjt ... available capacity of machine j in period t

zk ... pre-specified lead time for product k
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MLCLSP

Minimize costs Z =
∑
k∈K

T∑
t=1

(hk · ykt + sk · γkt)

subject to:

Initial inventory yk0 given due to a rolling planning horizon. (k ∈ K)

Demand in period t (inventory balance):

yk,t−1 + qk,t−zk
−
∑
i∈Nk

aki · qit − ykt = dkt (k ∈ K; t = 1, 2, . . . , T )

Capacities in period t:∑
k∈K

(
tbkj · qkt + trkj · γkt

)
≤ bjt (j ∈ J ; t = 1, 2, . . . , T

Considering setups if qkt > 0:

qkt −M · γkt ≤ 0 (k ∈ K; t = 1, 2, . . . , T )

Ranges:

qkt ≥ 0; ykt ≥ 0; ykT = 0; γkt ∈ {0, 1} (k ∈ K; t = 1, 2, . . . , T )
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Why the implementation of the production schedules from a deterministic

optimization model leads to stochastic results ?

[Even if all the parameters are assumed to be deterministic !]

...

� sequencing rules

� sequencing constraints

The results of their application later on are not known during the rough-

cut capacity planning (big-bucket model) and, hence, are unpredictable

and—finally—stochastic.
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Augmenting the planned lead times—with or without doing anything—is

the wrong answer.
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SBC: Stationary Backlog-Carryover (Stolletz (2008))

� Determine the blocking probability Prob [Backlog] for an Mt/Mt/1 loss

queueing system !

� Update the arrival rate λt for the next period !

=⇒ λ̃jkt = λjkt + λ̃jk,t−1 ·Prob [Backlog]jk,t−1 (j ∈ J ; k ∈ K; t = 1, . . . , T )
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MLCLSP

Minimize costs Z =
∑
k∈K

T∑
t=1

(hk · ykt + sk · γkt)

subject to:

Initial inventory yk0 given due to a rolling planning horizon. (k ∈ K)

Demand in period t (inventory balance):

yk,t−1 + qk,t−zk
−
∑
i∈Nk

aki · qit − ykt = dkt (k ∈ K; t = 1, 2, . . . , T )
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k∈K

(
tbkj · qkt + trkj · γkt

)
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We take the rates over the planning horizon from the given workload

Dk =
T∑
t=1

dkt . (k ∈ K)

=⇒ λjk =

(
Dk +

∑
i∈Nk

aki · dit
)
· tbjk

T∑
t=1

bjt

T
− trjk

(j ∈ J ; k ∈ K)

=⇒ μjk =

T∑
t=1

bjt(
Dk +

∑
i∈Nk

aki · dit
)
· tbjk + λjk · trjk

(j ∈ J ; k ∈ K)
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SBC: Stationary Backlog-Carryover (Stolletz (2008))
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SBC: Stationary Backlog-Carryover (Stolletz (2008))

� Determine the blocking probability Prob [Backlog] for an Mt/Mt/1 loss

queueing system !

� Update the arrival rate λt for the next period !

=⇒ λ̃jk = λjk + λ̃jk ·Prob [Backlog]jk (j ∈ J ; k ∈ K)
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SBC: Stationary Backlog-Carryover (Stolletz (2008))

� Determine the blocking probability Prob [Backlog] for an Mt/Mt/1 loss

queueing system !

� Update the arrival rate λt for the next period !

=⇒ λ̃jk = λjk + λ̃jk ·Prob [Backlog]jk (j ∈ J ; k ∈ K)

=⇒ Ujk = λ̃jk ·Prob [Backlog]jk (j ∈ J ; k ∈ K)

=⇒ Prob [Backlog]jk =
λjk

λjk + μjk
(j ∈ J ; k ∈ K)
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MLCLSP
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Production-quantity limit:

wkt = qkt −X(qkt) (k ∈ K; t = 1, 2, . . . , T )

Effective capacity loss:

Vjt =
∑
k∈K

wkt · tbjk (j ∈ J ; t = 1, 2, . . . , T )
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Product 04

Clearing Functions
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MLPLSP

Too complicated !

� computational times

� practical application
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We can find better schedules with less tardiness: ∼ 50% reduction.

We have more production-in-advance and, hence, more inventory.

We cannot guarantee a feasible solution for the scheduling problem.
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