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Introduction

Introduction

I [Production] Lead Time: the amount of time from when a part
enters the first machine in a line to when it leaves the last
machine. (Also called cycle time.)

I Random because of machine failures and other stochastic
phenomena.

I Research Goal: to calculate prob(T = τ) where T is the time a
part spends in a 3M2B Buzacott-type line and τ = 0, 1, 2, ...; to
calculate the minimum τ such that prob(T ≤ τ) ≥ 1− ε for
specified ε.

I Importance:

I Customers demand short and reliable lead times.
I The value of some products decreases with lead time.
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Introduction

Introduction
Prior literature

I Several papers obtain lead time distributions (or only moments of distributions) in the
classical queueing theory framework: random service times, infinite buffers.

I Others study lead time in models more appropriate to manufacturing:

I Tan (2003) describes a methodology for calculating performance measures

(including lead time) for a wide variety of Buzacott-type lines with finite buffers

and different control policies.

I Shi and Gershwin (2012) obtain an exact distribution of the lead time in a

2M1B Buzacott-type line with a finite buffer, and an approximate distribution of

the time in a single buffer of a long line.

I Shi (2012) studies a buffer allocation problem in which the time a part spends in

a single given buffer must satisfy prob(T ≤ τ) ≥ 1− ε.
I Colledani, Angius, and Horvath (2014) extend Shi and Gershwin (2012) to

2M1B lines with general Markovian machines.

I Biller, Meerkov, and Yan (2013) choose the parameters of the first machine of a

line with Bernoulli machines and infinite buffers to maximize the production rate

subject to an average lead time constraint. Meerkov and Yan (2014) extend this

to lines with exponentially distributed up- and down-times.
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Model

Model M1 B 1 M2 B 2 M3

Two Dynamic Systems

To determine the probability distribution of the lead time in steady
state, we study two dynamic systems:

I The Material Flow System Model
I This is a standard Buzacott-type model of a 3M2B line with

two-state machines and finite buffers. The state space is the set of
all (ν1, ν2, α1, α2, α3) where νi is the number of parts in Buffer i
(νi = 0, 1, ...,Ni ) and αi is the repair state of Machine i .
(αi = 1 or 0, i.e. operational or under repair.)

I The Reference Part Movement System Model
I This represents the movement of a reference part that enters the

system when the system is in state (ν1, ν2, α1, α2, α3).

Details can be found in the conference paper or in a longer paper in preparation (Shi and
Gershwin, 2015).
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Model

Model M1 B 1 M2 B 2 M3

The Reference Part Movement System (RPMS) Model

I Assumption: First in, first out buffers.

I Definition: The position of a part in a buffer is one more than the
number of parts in the buffer that will leave the buffer before it.

I Notation: χi (t) is the position of the reference part if it is in
Buffer i at time t. (χi (t) is not defined if the reference part is in
the other buffer.)

I State of the RPMS:
I It does not include anything upstream of the reference part.
I (χ1, ν2, α2, α3) when the reference part is in B1 (χ1 ≤ ν1);
I (χ2, α3) when the reference part is in B2 (χ2 ≤ ν2).
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Model

Model M1 B 1 M2 B 2 M3

Evolution of the state: Phase 1

M1 M2

�1(t
0) = ⌫1(t

0)

M3

⌫2(t
0)

the reference part

I The reference part can enter the system only when M1 is up and
not blocked.

I If the reference part arrives at time t ′, it goes into B1 at position
χ1(t ′). At that time, χ1(t ′) = ν1(t ′).

I χ1(t) decreases as M2 moves earlier parts from B1 to B2 until
χ1(t) = 1, i.e., until the reference part is the first part in B1.
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Model

Model M1 B 1 M2 B 2 M3

Evolution of the state: Phase 2

M1 M2

⌫1(s)

M3

�2(s) = ⌫2(s)

the reference part

I The reference part moves into B2 at time s. χ2(s) = ν2(s).

I χ2(t) decreases as M3 moves earlier parts in B2 out of the system,
i.e., until the reference part is the first part in B2.

I As soon as M3 is up, at time u, the reference part leaves the
system, and one sample of the lead time (T = u − t ′) is generated.
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Analysis

Formulation
Definitions

I A(t) is the event that the reference part enters Buffer 1 at time t.

I prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3,A(t))
is the conditional probability that the reference part has lead time
T = τ given that χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3,
and given that it arrived at time t.

I prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)) is the
conditional probability that χ1(t) = x1, ν2(t) = n2, α2(t) = a2,
α3(t) = a3, given that the reference part arrived at time t.
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Analysis

Formulation
Law of Total Probability

prob(T = τ) = prob(T = τ |A(t)) =

N1∑
x1=1

N2∑
n2=0

1∑
a2=0

1∑
a3=0

[

prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3,A(t)) ×

prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

]
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Analysis

Formulation
Notation Simplification

To make the slides a little easier to read, we define

p(τ |x1, n2, a2, a3,A(t)) =

prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3,A(t))

p(x1, n2, a2, a3|A(t)) =

prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))
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Analysis

Formulation
Law of Total Probability

The Law of Total probability then becomes:

prob(T = τ) = prob(T = τ |A(t)) =

N1∑
x1=1

N2∑
n2=0

1∑
a2=0

1∑
a3=0

p(τ |x1, n2, a2, a3,A(t)) p(x1, n2, a2, a3|A(t))
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Analysis

Solution
p(τ |x1, n2, a2, a3,A(t)))

I We determine this quantity by considering the change in state and lead
time in one time step. That is, we relate prob(T = τ |state at time t) to
prob(T = τ − 1|state at time t + 1) for all states that can be reached in
one time step.

I We only have to evaluate this probability for states in which the reference
part is in the first buffer. This is because the lead time starts when it
arrives, and it arrives at the first buffer.

I There are many cases. We consider only one generic case here.

I Further simplified notation: If 2 ≤ x1 ≤ N1,

Πa2a3
t (τ, x1, n2) = p(τ |x1, n2, a2, a3,A(t)))

I New notation for x1 = 1 is defined in the paper.
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Analysis

Solution
p(τ |x1, n2, a2, a3,A(t)))

Then Π11(τ, x1, n2) =

p2p3Π00(τ − 1, x1, n2) + p2(1− p3)Π01(τ − 1, x1, n2 − 1)

+(1− p2)p3Π10(τ − 1, x1 − 1, n2 + 1) + (1− p2)(1− p3)Π11(τ − 1, x1 − 1, n2)

I p2p3Π00(τ − 1, x1, n2): M2 and M3 fail so reference part position and
Buffer 2 level do not change.

I p2(1− p3)Π01(τ − 1, x1, n2 − 1): M2 fails, M3 stays up so reference part
position does not change and Buffer 2 loses a part.

I (1− p2)p3Π10(τ − 1, x1 − 1, n2 + 1): M2 stays up, M3 fails so reference
part position decreases and Buffer 2 level increases.

I (1− p2)(1− p3)Π11(τ − 1, x1 − 1, n2): Both machines stay up so
reference part position decreases and Buffer 2 level stays constant.
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Analysis

Solution
p(τ |x1, n2, a2, a3,A(t)))

I Other equations, including initial conditions, are derived similarly.

I When x1 = 1 and M2 is up and not blocked, the reference part
with leave B1 in the next time step and enter B2. The probability
distribution of the time it spends in B2 is given by the 2M1B lead
time distribution of (Shi and Gershwin, 2012).

I All these conditional probabilities are now determined.

I They are the first set of factors in the Law of Total Probability.
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Analysis

Solution
p(x1, n2, a2, a3|A(t))

These quantities can be expressed in terms of the steady-state
probability distribution of the 3M2B line p(n1, n2, a1, a2, a3).

1. When the reference part enters the line, χ1(t) = x1 = ν1(t) = n1.
Therefore

p(x1, n2, a2, a3|A(t)) =

prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)) =

prob(ν1(t) = n1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

2. When the reference part enters the line, the first machine must be
up. Therefore

prob(ν1(t) = n1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)) =

prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3|A(t))
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Analysis

Solution
p(x1, n2, a2, a3|A(t))

3. From the definition of conditional probability,

prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3|A(t))

=
prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3,A(t))

prob(A(t))

4. A(t), the event that a part enters the line, is the event that the
first machine is up and not blocked, which is easy to calculate from
the steady-state probability distribution of the 3M2B line.

In fact, prob(A(t)) is the production rate of the line.
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Analysis

Solution
p(x1, n2, a2, a3|A(t))

5. Shi and Gershwin (2015) provide expressions for

prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3,A(t))

in terms of p(n1, n2, a1, a2, a3).

We now have the second set of factors in the Law of Total Probability,
and therefore enough to evaluate prob(T = τ).
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Numerical Experiments

Numerical Experiments
1. Check with Little’s Law

There are two ways of calculating the mean lead time:

From Little’s law: E[T ] =
n̄1 + n̄2

P

From the lead time distribution: E[T ] =
∞∑
τ=0

τprob(T = τ)

We use Tan’s (2003) Matlab code to calculate the steady state distribution of a 3M2B line

for our numerical examples.
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Numerical Experiments

Numerical Experiments
1. Check with Little’s Law

Case 1 2 3 4 5

r1, p1 .1, .01 .8, .096 .07, .01 .2, .02 .12, .009
r2, p2 .1, .01 .1, .01 .12, .008 .2, .02 .15, .009
r3, p3 .1, .01 .1, .01 .12, .008 .4, .048 .07, .01
N1 10 30 16 18 19
N2 10 22 23 35 17

P .819137 .861210 .847203 .874546 .848478
n̄1 5.983370 14.496551 6.606718 9.860994 12.468434
n̄2 4.016630 9.393820 6.665852 16.534348 9.779282

(n̄1 + n̄2)/P 12.207969 27.740476 15.666334 30.181748 26.220720
E[T ] 12.207969 27.740476 15.666334 30.181748 26.220720
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Numerical Experiments

Numerical Experiments
2. Comparison with Simulation

pi = .01 and ri = .1 for i = 1, 2, 3, N1 = N2 = 10
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Numerical Experiments

Numerical Experiments
2. Comparison with Simulation

i pi ri ei Ni

1 .01 .07 .875* 16

2 .008 .12 .938 23

3 .008 .12 .938
* Bottleneck
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Numerical Experiments

Numerical Experiments
2. Comparison with Simulation

i pi ri ei Ni

1 .009 .12 .930 19

2 .009 .15 .943 17

3 .01 .07 .875*
* Bottleneck
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Numerical Experiments

Numerical Experiments
3. A Line and Its Reverse

r1 p1 r2 p2 r3 p3 N1 N2 P n̄1 n̄2
original line .1 .1* .1 .01 .1 .01 12 14 .493214 1.284711 1.293355
reversed line .1 .01 .1 .01 .1 .1* 14 12 .493214 12.706645 10.715289
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Numerical Experiments

Numerical Experiments
3. A Line and Its Reverse
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Numerical Experiments

Numerical Experiments
τ.95

In the following slides, τ.95 is the minimum value of τ such that
prob(T ≤ τ) ≥ .95.
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Numerical Experiments

Numerical Experiments
4. Variance and τ.95 vs. N2
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Numerical Experiments

Numerical Experiments
5. Variance and τ.95 such that prob(T ≤ τ) ≥ .95 vs. MTBFi

I In the following graphs, we vary ri and pi together so that

ei =
ri

ri + pi

is constant.

I The x axis is

MTBFi = MTTRi + MTTFi =
1

ri
+

1

pi
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Numerical Experiments

Numerical Experiments
5. Variance and τ.95 vs. MTTF1
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Numerical Experiments

Numerical Experiments
5. Variance and τ.95 MTTF2
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Numerical Experiments

Numerical Experiments
4. Variance and τ.95 vs. MTTF3
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Future Research

Future Research

I Extensions to longer lines, lines with machines whose repair/failure behavior is
described by general Markov chains, and more general system topologies. (See
next talk1.)

I Extensions to LIFO and random buffer disciplines.

I Extensions to systems with continuous time and discrete or continuous material.

I Understand the qualitative behavior of Var(T ) and τ.95, and determine their
relationships with the classification of 3M2B lines into five classes by Shi and
Gershwin (2013).

I See if this analysis can approximate the lead time distribution in a 3M2B
segment of a longer line.

I Optimize buffer size and machine choice under a constraint on τ.95.

I Develop an approximation of the lead time for large systems — systems for
which it is not feasible to calculate or store the steady-state probability
distribution.

1
Lead Time Dependent Product Deterioration in Manufacturing Systems with Serial, Assembly and Closed- Loop

Layout presented by Marcello Colledani in this conference; paper by Colledani, Angius, Horvath, and Gershwin.
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Thanks

Thank you. Questions?
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