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Closed queueing networks are used for modeling
production and telecommunication systems.
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A closed queueing system

A linear flow of material

A finite buffer capacity

A phase -type distributed processing times

A no failures

A blocking after service

A first -come first -served queueing discipline
A one server per station
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The objective is to determine the exact distributions of
the Inter -departure , Inter -start , and Cycle Time of Closed
Queueing Networks Subject to Blocking

Inter -start time
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Inter -departure time

~—

cycle time
Exact results can be used to test the

accuracy of approximation methods
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A method to determine the exact distribution of
Interdeparture, interstart, and cycle time distributions
IS not available in the literature

Variance of the inter-departure time or of the output:

Buzacott, Liu, and Shanthikumar (1995), Duenyas and Hopp (1990)
Duenyas, Hopp, and Spearman (1993), Gershwin (1993)

Gelenbe (1975), Hendricks (1992)

Hendricks and McClain (1993), Kim and Alden (1997)

Li and Meerkov (2000) , Miltenburg (1987)

Manitz (2005), Manitz and Tempelmeier (2012)

Tan (1999a), Tan (1999b), Tan (2000)

Inter-start time distribution:
Lagershausen (2012)

Cycle time distribution:

Chow (1980), Schassberger and Daduna (1983), Boxma and Donk (1982)
Boxma, Kelly, and Konheim (1984), Daduna (1982)

Kelly and Pollett (1983), Boxma (1983)
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Our method is based on generating and analyzing the

state transition matrix of the inter
the original Markov chain model

3-station ,
3-customer exponential CQN
with 1 buffer unit at each station:
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-event times from

State description: (n_1, n_2, n_3)

n_i: number of
workpieces at station 1

(B_i(j): station I is blocked
while containing j workpieces )

» Transition rate matrix of CTMC

» Steady-state probabilities
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State transition diagram for the Inter -departure Time Is
derived from the original state transition diagram

predecessor states rst inter-departure time S inter- ‘ i exit states
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State transition diagram for the Inter -start Time Is
derived from the original state transition diagram

first inter-start time second inter-start time exil states
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Cycle Time s derived

State transition diagram for the

from the original state transition diagram
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Indicator Matrix G, is formed
by using the State Transtion Diagram

predecessor states first inter-departure time second inter-departure time  exit states
Indicator matrix G, = {gf;} with g; j = 1 if event e N "
takes place by a transition from state 1 to state j. T :
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The proposed method yields
the exact inter -event time distributions  directly
by using the system description

Fr(t) =1 — goelety,

System description

(number of stations,

buffer capacities, processing

time distributions, number of
rotating parts, é)

me (I + Q. Re) =0,

—exit _ _entry )—1
T, = —T, Qe R,
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Inter -event Time Distribution is the First Passage Time
Distribution when the process starts atthe  entry states
with the corresponding steady  -state probabilities

Fr(t) = 1 — g elety,

d

fr(t) = LBy (1) = —m Qe
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Probability Density Functions

Figure 1: Probability density functions of the inter-departure time of Station 1
of a closed three-station system with different coefficient of variations of the
processing time, 1 =3, o =2, ug3 =2, b; =2 Vi
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Probability Density Functions

Figure 2: Probability Density Function of the cycle time of Station 1 of a closed
three-station production line with exponential servers and 3 pallets, 1, = 0.7,
Ho = 0.5, U3 = 0.9
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Numerical Results

20

!;’{ Leibniz
{ i Zf Universitit
tog: 4§ Hannover



