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Abstract:
In this paper, we consider two variants of a multi-class queueing system with a
single server, finite buffers, and setup times. In the first variant, a setup occurs
every time the server turns to a different class of customers, even if the queue of
the scanned customer class is empty. In the second variant, the server skips empty
queues and a setup is performed only at queues that contain at least one customer.
We propose decomposition methods for the analysis of the steady-state behavior of
both system variants. We also show that multi-product kanban systems with setup
times and lost sales are possible applications of the discussed models and we give
numerical results that indicate the accuracy of the proposed approximation methods.
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1 Introduction

Queueing systems with multiple classes of customers are difficult to evaluate analyt-
ically, especially if buffers are finite and setup times require other service disciplines
than first-come-first-served (FCFS). Recently, Anupindi and Tayur (1998), Olsen
(1999), and Kim and Van Oyen (2000) investigated scheduling methods for multi-
class manufacturing systems with setup times. Simulation was used in the first two
studies to evaluate system alternatives, the authors of the latter employed numerical
analysis of a Markov decision process model. As a consequence, they were restricted
to the analysis of small systems with mainly two and three customer classes.



In this paper, we propose decomposition methods for two variants of a multi-
class queueing system with a single server, finite buffers, and setup times. The
performance measures generated by both approximation procedures are sufficiently
accurate, and the algorithms converge fast and reliably. In the first system variant,
setup, or change-over, times occur every time the server turns to a different class of
customers. If the queue is empty upon completion of the setup, the server turns to
the next class of customers so that it never idles. In the second variant, the server
skips empty queues and a setup is performed only at queues that contain at least one
customer. If the system is completely empty, the server idles at the current queue
conserving the present setup. In both variants, queues are served exhaustively and
they are considered in a fixed sequence that is repeated cyclically. Customers are
rejected if all positions are occupied in the queue of their class.

Decomposition methods are frequently used to analyze multi-stage manufactur-
ing systems with one product class (see, for example, Bonvik et al. 2000; Dallery and
Frein 1993; Dallery and Gershwin 1992; Di Mascolo et al. 1996 and the textbooks by
Buzacott and Shanthikumar 1993, Gershwin 1994, and Papadopoulos et al. 1993).
The basic principle is to decompose a system with K stages into K single-stage
subsystems. We transfer this idea to multi-class systems and decompose a system
with r customer classes into r single-class subsystems. This has been done before,
for example, by Altiok and Shiue (1994), Federgruen and Katalan (1994), Jung and
Un (1994), Kofman (1993), and Takagi (1991). What may be new in our approach
is that we model the subsystems as continuous-time Markov chains that are then
solved numerically. By doing this, we gain considerable flexibility for the design of
the subsystems.

Systems like the one considered here are called polling systems in the computer
science literature (see, for example, the survey by Takagi 1990). Both variants
are special and extremely difficult examples of this class. Variant A is a finite-
capacity polling system with cyclic-exhaustive service and a continuously roving
server, variant B is a finite-capacity polling system with cyclic-exhaustive service,
zero switch-over times, state-dependent setups, and a server that idles at the most
recently served queue if the system is empty (patient server).

The literature on finite-capacity polling models (with more than one buffer) is
severely limited. Ganz and Chlamtac (1988) and Tran-Gia and Raith (1988) propose
approximate evaluation methods for cyclic polling and nonexhaustive service, Takagi
(1991) and Kofman (1993) derive exact procedures for cyclic polling and exhaustive
and nonexhaustive service disciplines, Jung and Un (1994) describe an exact method
for cyclic polling and exhaustive service. The exact methods require the solution
of sets of linear equations where the number of unknowns grows rapidly when the
number of customer classes and the buffer capacities are increased.

In the next section, we propose a decomposition method for the first variant and
in § 3 a decomposition method for the second variant of the multi-class queueing
system. Some details, though, have to be omitted for the sake of brevity. They
may be found in Krieg and Kuhn (2001a, 2001b). In § 4, multi-product kanban
systems with setup times and lost sales are shown to be a possible application of
the described models in manufacturing and we give numerical results for several
example systems that indicate the accuracy of the two evaluation procedures.
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Figure 1: Decomposition of a system with r classes into r single-class subsystems

2 Variant A: Mandatory setups and a continu-

ously roving server

Consider first the variant with mandatory setups and a continuously roving server.
At most Ki customers of any class i, i = 1, . . . , r, may be in the system at any
time. For ease of presentation, we restrict ourselves to setup cycles in which each
queue appears exactly once (rotation cycles). Without loss of generality, the server
considers the customer classes 1, ..., r in ascending order of indices. For modeling
purposes, we assume that customers of class i arrive according to a Poisson process
with rate λi and independently of the customers of any other class. The length of a
setup and the service time per customer of class i are independent and identically
distributed random variables that follow exponential distributions with mean si and
µ−1

i , respectively. Thus, we have a multi-class M/M/1/{Ki}
r
1
queueing system with

exhaustive-cyclic service and exponentially distributed setup times.
Since the Markov chain model of this system suffers from state space explosion

with increasing number of customer classes and buffer capacities (Ibe and Trivedi
1990), we propose a decomposition method that splits up the original system with r
classes into r single-class subsystems (see figure 1). The subsystems are represented
by continuous-time Markov chains that are solved numerically. The occupation of
the server with customers of other classes in the original system is modeled as a
temporary shutdown, absence, or vacation, of the server in the subsystems. Thus,
the server in any subsystem i, i = 1, ..., r, may, at any time, be in one of the three
states “setup”(Si), “busy period” (Bi), and “vacation” (Vi) (see figure 2).

If the setup is viewed as the last phase of the vacation, then the subsystems are
M/M/1/Ki queueing systems with cyclic-exhaustive service and multiple vacations
(for literature on queueing systems with vacations see, for example, the surveys by
Doshi 1986 and 1990, Teghem Jr. 1986, Takagi 1991, Chapter 2, and Takagi 1993).

In each subsystem, one unknown parameter has to be determined. This pa-



Setup
(Si)

��������� � ��	�

Vi)

��
������������ ���

(Bi)

���������  !�"$#�%���&('

V(Si+1)

���������  !�"�#)%���&('

V(Bi+1)

���������  !�"�#)%���&('

V(Si−1)
Vacation Phase

V(Bi−1)

*�*�*
si si+1 si−1

0=in

1−⋅ iiq µ
1+iBt+ , - .0/2143�145 6�7 8 79.0,

7 :0;07 6�7 < =4/
i+1)

1−iBt

(from analysis of7 :�;07 6�7 < =4/
i−1)

(given) (given) (given)
+ :03�>030.0?@30A0B�8 C0=43

)

0>in

Figure 2: States of the server in subsystem i (class i), where ni is the number of
customers (of class i), si is the average setup time, qi is the average number of served
customers, µ−1

i is the average service time per customer, and tBj
, j ∈ {1, . . . , r}\{i},

is the average length of the busy period in subsystem j.

rameter is the average length of the busy period, denoted by tBi
for the server in

subsystem i. In subsystem i+1, as in any other subsystem except subsystem i, this
parameter value is used as the average length of vacation phase V (Bi), that is, the
part of the “downtime” or “absence” of the server in subsystem i+1 that represents
the occupation of the server in the original system with customers of class i. The
details of the calculations that have to be done to obtain the current value of the
unknown parameter tBi

are given in Krieg and Kuhn (2001a). Here, we may only
sketch the general procedure.

The average length of the busy period in subsystem i equals the product of the
average number of served customers per cycle (qi) and the average service time per
customer (µ−1

i ). The value of qi, however, is not known. But, after finding the
steady-state probability vector of the Markov chain for subsystem i, it is possible
to determine how the average duration of the cycle “setup-busy period-vacation”
distributes percentage-wise among the three states of the server. Since the average
duration of the setup is given by si and therefore known, the average length of the
cycle and the average length of the busy period (tBi

) may now be computed.
Figure 3 illustrates the scheme of the algorithm. After guessing rough estimates

for the average duration of the busy periods B1, B3, ..., Br, initial values are deter-
mined by analyzing subsystems 2 through r. Then the first rotation starts with the
analysis of subsystem 1. A new value for tBi

is computed and performance measures
relating to class 1 are obtained. After that, the algorithm continues with equiva-
lent calculations for subsystems 2 through r. Additional rotations of the same kind
follow until a stopping criterion is simultaneously met by all subsystems. This may
happen after the analysis of any subsystem during the last rotation.
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Figure 3: Scheme of the algorithm

3 Variant B: State-dependent setups and a pa-

tient server

Consider now the variant where setups occur only if there are customers waiting at
the time the server turns to a queue and where the server idles at the current queue
conserving the present setup if the system is completely empty. Other than that,
the system is identical to the one analyzed before. An approach similar to the one
presented above may be used for this variant. There is, however, an additional state
called “idle period” that the server of any subsystem i may be in and the sequence of
the states is slightly different (see figure 4). At the end of the busy period, the server
may idle for a certain period of time before taking the vacation. The average length
of this idle period is denoted by tIi

. If the server finds no waiting customers upon
return from a vacation, he instantly begins another vacation (multiple vacations).

The idle period in subsystem i represents the condition of the server in the
original system when at the end of the busy period for class-i customers the system
is completely empty. Before subsystem i may be analyzed, the average length of the
idle period tIi

has to be estimated (details are given in Krieg and Kuhn 2001b).
Other than above, we cannot use the steady-state probability of the setup state

for class-i customers and the corresponding average setup time to determine the
average cycle length because the setup state need not be attended by the server in
every cycle. Rather, the average length of the setup state per cycle has also to be
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Figure 4: States of the server in subsystem i (class i), where ni is the number of
customers (of class i), si is the average setup time, qi is the average number of
served customers, µ−1

i is the average service time per customer, and tSj
(tBj

, tIj
), j ∈

{1, . . . , r}\{i}, is the average length of the setup state (busy period, idle period) per
cycle in subsystem j.

determined in addition to the average length of the busy period. For the sake of
brevity, we refer to Krieg and Kuhn (2001b) for further details.

4 Numerical results: Multi-product kanban sys-

tems

A possible application of the discussed models are multi-product kanban systems
with setup times and lost sales. Subtracting the blocking probabilities of the queue-
ing system from one yields the fill rates of the kanban system, that is, the (long-
run) fraction of demand filled immediately. A second important set of performance
measures for a kanban system, the average inventory levels, may be obtained with
Ki − Li, where Ki is the number of kanbans for product i and Li is the average
number of class-i customers in the queueing system.

To indicate the accuracy of the procedures we give numerical results for several
kanban systems. We generated sets of example systems by systematically changing
the total traffic intensity (ρ) and the number of products (r) of a generally defined
base system (see table 1). Parameter values for products 2, ..., r − 1 were chosen to
yield equal differences between the traffic intensities, the processing rates, and the
setup times of consecutive products, for example, ρ1−ρ2 = ρ2−ρ3 = ... = ρr−1−ρr.
The reference values for the determination of the relative approximation errors were
obtained with the exact Markov chain model (for systems with three products) and
via simulation.

Tables 2 through 5 contain two values for each set of performance measures:
the maximum and the average of the absolute percentage errors of all products
(errmax and erravg, respectively). To indicate if the maximum error resulted from
under- or over-estimating the actual value, we used the negative or positive number,
respectively. Tables 2 and 3 show the relative approximation errors for variant A,
tables 4 and 5 the equivalent results for variant B. In these examples, most relative
errors are close to or below 1.0%.



Table 1: Parameter Values and Ratios of the Base System

Total traffic intensity, ρ 0.8
Traffic intensity ratio ρ1/ρr 1.6
Processing rate of product 1, µ1 2.0
Processing rate ratio µ1/µr 0.9
Setup to processing time ratio 2.0
of product 1, s1/µ

−1

1

Setup time ratio s1/sr 0.8
Required fill rates, fi 95.0%

Table 2: Variant A: Relative Approximations Errors I

Avg. Inv. Levels Fill Rates
ρ K1, K2, K3 errmax erravg errmax erravg

0.50 5, 5, 4 1.88 1.86 1.16 1.08
0.55 6, 6, 5 1.91 1.89 1.02 0.96
0.60 7, 6, 6 2.03 1.78 1.18 0.91
0.65 7, 7, 6 1.57 1.51 0.93 0.81
0.70 8, 8, 7 1.36 1.26 0.71 0.56
0.75 10, 10, 9 1.23 1.06 0.40 0.21
0.80 12, 12, 11 1.11 0.86 −0.33 0.21
0.85 15, 15, 13 1.19 0.90 −0.87 0.68
0.90 20, 20, 18 2.01 1.54 −1.39 1.17
0.95 33, 32, 29 4.25 3.81 −1.73 1.53

Table 3: Variant A: Relative Approximations Errors II

Avg. Inv. Levels Fill Rates
r K1, . . . , Kr errmax erravg errmax erravg

3 12, 12, 11 1.11 0.86 −0.33 0.21
4 12, 12, 11, 10 0.79 0.58 −0.42 0.34
5 12, 12, 11, 11, 10 0.53 0.38 −0.42 0.35
6 12, 12, 12, 11, 11, 10 0.42 0.32 −0.41 0.33
7 12, 12, 12, 11, 11, 10, 10 0.31 0.26 −0.41 0.33
8 12, 12, 12, 11, 11, 11, 10, 10 0.29 0.23 −0.41 0.33
9 12, 12, 12, 12, 11, 11, 11, 10, 10 0.27 0.18 −0.31 0.25
10 12, 12, 12, 12, 11, 11, 11, 10, 10, 10 0.16 0.13 −0.31 0.31



Table 4: Variant B: Relative Approximations Errors I

Avg. Inv. Levels Fill Rates
ρ K1, K2, K3 errmax erravg errmax erravg

0.50 5, 5, 5 −0.87 0.41 0.58 0.31
0.55 6, 6, 5 0.46 0.34 0.46 0.30
0.60 7, 6, 6 0.55 0.39 0.41 0.24
0.65 8, 7, 7 0.67 0.45 0.20 0.10
0.70 9, 8, 8 0.61 0.40 −0.29 0.22
0.75 10, 10, 9 0.39 0.31 −0.63 0.58
0.80 13, 12, 11 0.36 0.29 −1.02 0.94
0.85 16, 16, 14 0.63 0.47 −1.40 1.30
0.90 21, 21, 19 1.47 1.28 −1.80 1.66
0.95 33, 32, 29 3.90 3.75 −2.00 1.84

Table 5: Variant B: Relative Approximations Errors II

Avg. Inv. Levels Fill Rates
r K1, . . . , Kr errmax erravg errmax erravg

3 13, 12, 11 0.36 0.29 −1.02 0.94
4 13, 13, 12, 11 0.27 0.22 −1.13 1.03
5 13, 13, 12, 11, 11 0.14 0.08 −1.14 1.10
6 13, 13, 12, 12, 11, 10 0.13 0.04 −1.14 1.09
7 13, 13, 12, 12, 11, 11, 10 0.00 0.09 −1.14 1.01
8 13, 13, 12, 12, 12, 11, 11, 10 0.00 0.05 −1.04 0.96
9 13, 13, 12, 12, 12, 11, 11, 11, 10 0.00 0.01 −1.03 0.91
10 13, 13, 12, 12, 12, 11, 11, 11, 10, 10 0.00 0.05 −0.94 0.85



5 Conclusion

We have presented decomposition methods for two variants of a multi-class queueing
system with a single server, finite buffers, and setup times. Whereas in variant A
setups are mandatory and the server constantly switches queues performing setup
after setup if the system is empty, variant B is characterized by state-dependent
setups and a patient server. In both variants, queues are served exhaustively and
they are considered in a fixed sequence that is repeated cyclically. Due to the finite
buffers, arriving customers are rejected if all positions are occupied in the queue of
their class.

Both decomposition methods were observed to approximate the performance
measures with small relative errors, and the algorithms converged fast and reli-
ably. Therefore, they are well-suited for analyzing and optimizing, for example,
multi-product kanban systems with setup times and lost sales. In Krieg and Kuhn
(2001c) we discuss an optimization procedure built around the proposed decom-
position method for variant A that finds optimal or near-optimal solutions to the
Multi-Product Kanban System Configuration Problem (MPKSCP).
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