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Abstract
In the paper a new efficient algorithm for the allocation of storage capacity in serial
production lines is derived. The proposed method aims to find out the distribution of
storage capacity between machines that minimizes the total buffer space assigned to the
line satisfying a target production requirement. The algorithm relies on an iterative
scheme that, starting from the minimal capacity required in each buffer to meet the
production requirement, proceeds increasing the capacity of buffers until the target
production rate is reached. At each iteration the buffer corresponding to the largest
component of the gradient of production rate with respect to each buffer capacity is
selected and its capacity is increased by a small amount of space. The effect of such an
increasing is then estimated by applying the decomposition technique to the resulting
line. Preliminary numerical results shows that the buffers distribution provided by the
algorithm is optimal or near optimal and that the convergence is rapidly reached.
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1. Introduction
The paper presents an efficient method for the allocation of storage capacity in serial
production lines. The proposed method can be applied to the configuration of buffer
capacity in Flow Line Systems where machines are de-coupled by means of in-process
inventories. Flow Line Systems are quite common in shop floors being adopted in
environments characterized by large production volumes and long product life cycles.
Their configuration is a well-established topic in literature due to both the economical
and the strategical relevance of the investment required.
More specifically, the design phase of a transfer line involves a large number of
variables that have to be defined. Indeed, in order to find out the final configuration of
the line, decisions on the number of stations in the system, the efficiency of the stations
and the inter-storage capacity of buffers have to be taken. Therefore, in this context,
once the number of production stages has been identified and the machines
characteristics have been selected (namely processing rates and reliability parameters,
i.e. Mean Time To Failures and Mean Time To Repair), a tool to determine the buffer
distribution that achieves the production requirement and, at the same time, minimizes



the total buffer space is highly recommended. Indeed, the availability of the most
suitable distribution of buffers with respect to a target throughput rate allows
establishing a good compromise in the trade-off production rate/inventory, that is in the
relationship between the need to increase the buffer storage to enhance the system
performance and the need to reduce it to limit space and in-process inventory costs.

The objective of this paper is therefore to make a further step toward one of the
major goal of the literature on analytical methods, that is to provide the system
designers a set of tools to support them in the definition of the design variables.

The proposed method is able to find out the optimal or near optimal distribution of
buffers in transfer lines with finite capacity buffers and unreliable stations relying on
efficient approximated techniques for the performance evaluation of this type of
systems [7]. In this paper the continuous model of homogeneous production lines has
been considered, but the extension of the approach to the case of deterministic,
exponential and non homogeneous lines appears rather straightforward.
The approach proposed in this paper can be referred as a gradient approach [3,4,8]. The
algorithm relies on an iterative procedure that, starting from the minimal capacity
required in each buffer to meet the production requirement, proceeds increasing the
capacity of buffers until the target production rate is achieved. At each iteration, the
buffer corresponding to the largest component of the gradient of production rate with
respect to each buffer capacity is increased of a fixed small amount of space. The effect
of such an increasing is then estimated by applying the decomposition technique on the
resulting line.
Differently from the previous works based on the use of the gradient, in the single step
of the proposed iterative method the global direction to follow in the solution space is
not searched; on the contrary, the method tries to get closer to the optimal solution
following one dimension of the space solution at time. The dimension is identified by
the largest derivative value of the throughput with respect to each dimension.

2. Brief Literary Review
A large amount of literature has been developed in the last decades on the analysis of
transfer lines or flow line systems, see [1] for a survey on this topic. However, this
research is mainly devoted to the performance estimation of such systems by assuming
known machine parameters and buffer capacities. Several papers deal with the optimal
buffer allocation and with the assessment of qualitative properties of transfer lines, but
very few of them aims to provide effective tools for the system design. In this area, two
main research streams can be identified: the first one is based on the evaluation of
system performance by means of simulation technique while the other one makes use of
analytical methods to obtain the performance measures of the system. A very detailed
and exhaustive review of these topics in literature can be found in the work of Gershwin
and Goldis [3].
Different papers address the problem of the buffer space configuration between
machines in serial production lines. In particular, Park [8] developed a two-phase tree
search branch and bound method to solve the problem under examination for discrete
model of transfer lines and similar problems closely related. Gershwin and Goldis [3]
derived a gradient method to solve the problem on the basis of the intuition that the first
order expansion of the production rate gives the possibility to formulate the problem in
terms of integer linear problem. The results provided by the authors demonstrate that



this method can lead to optimal or near optimal solutions. Gershwin and Schor [4]
improved the Goldis algorithm in terms of accuracy and, mainly, of convergence speed:
in particular, they develop an iterative technique that solves the problem under
examination, referred as primal, on the basis of the solution obtained for the dual
problem (i.e. the maximization of production rate given a total amount of buffer space
available) by means of  a gradient approach.

3. Description of the method
3.1. Problem Formulation
As pointed out in the introduction, the design phase of a transfer line involves different
system variables to be defined such as machine speed, machine reliability and buffer
capacities. In this paper we assume that the characteristics of machines have already
been selected. Also the processing cycle of the product has already been defined and, as
a consequence, the number of stages building-up the line. Parts always follow a linear
path in the system starting from the first machine, where they undergo the first
operation, to the last machine in which they complete their process cycle. Buffers are
located between machines so that the behavior of machines is partially de-coupled by
the rest of the line. In such a way, it is possible to adsorb the disruption of flow due to
processing times and failure occurrences, thus reducing the interdependencies among
machines and improving the system performance. Buffers can be neither infinitely
large, given the high costs of the floor space and work in process inventories, nor too
small to avoid unsatisfactory levels of production rate. Therefore, a certain level of
capacity for each buffer has to be defined in the design phase of a transfer line by
relating them to the desired performance of the line.

The problem we deal with in this paper is that of minimizing the total buffer
capacities so that the production rate of the line is greater than or equal to a certain
desired value. This problem, already known in literature as the primal problem [3], is
well suited and motivated when the production rate of the system cannot be lower than a
certain value and the floor space has a cost. In addition, the cost of work in process
inventories does not change through the different stages of the system.

Let us indicate with K the number of machines of the flow line that has to be
designed, with Mi (with i=1,…,K) and Bi (with i=1,…,K-1) respectively the machines
and the buffers of the system. Machines are unreliable and can fail in different Fi (with
i=1,…,K) modes. Time to failures and time to repairs are exponentially distributed for
each mode. We denote with pi,j (with j=1,…,Fi) the failure rate of machine Mi going
down in mode j and with ri,j the repair rate of machine Mi going up from failure mode j.

We assume that failures are ODFs (Operation Dependent Failures) and that machines
cannot be down in more than one mode. Machine Mi process material provided that
buffer Bi-1 is not empty and buffer Bi is not full. The sizes of each buffer Bi, denoted
with Ni, are the decision variables that have to be determined. In particular, we address
the continuous model of homogeneous production lines; for a more detailed description
of continuous material flow lines refer to [1,2,6,7].

The production rate of the system, denoted with P, is a function of machine
parameters and of buffer capacities. Since it is assumed that machine parameters have
already been defined, buffer capacities are the only variables that have to be chosen for
reaching the target production rate. Thus, the primal problem can be formulated as
follows:
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where P* represents the target production rate while NT is the total amount of allocated
buffer capacity.
Note that the above problem has not a unique optimal solution since it is possible to find
more combinations of vectors N=(N1,…,NK) satisfying the production rate constraint.
The solution vectors differ in the distribution of the single buffer spaces even if they are
characterized by the same total buffer capacity NT.

A further assumption is that the production rate P is a concave function
monotonically increasing in NT. That is, the production rate of the line increases when
the total buffer capacity NT increases, keeping constant the machine parameters.
Concavity implies that gains in production rate, obtained by increasing the total buffer
capacity, decrease as NT increases. Also the function P is assumed to be continuous in
the variables Ni. These assumptions are reasonable and motivated by several numerical
results appeared in literature [4,5,9].

3.2. Solution methodology
In this Section a simple heuristic method is proposed for solving the problem
formulated in (1). The method is mainly based on the decomposition technique that is
used to evaluate the performance, i.e. average production rate and buffer levels, of
transfer lines. The main idea of the decomposition [2] is to represent the behavior of
complex transfer lines by means of smaller systems or building blocks that can be easily
analyzed with exact analytical methods. Thus, by assessing the performance of building
blocks, it is possible to approximately predict the performance of the whole system.
In the decomposition method a transfer line with K machines is decomposed into a set
of K-1 building blocks that model aggregately the whole line. Each building block is a
line composed of two pseudo-machines and an inter-stage buffer having the same
capacity of the corresponding buffer of the original line. The first pseudo-machine
represents the portion of the original system upstream the corresponding buffer while
the second pseudo-machine models the portion of the original system downstream the
corresponding buffer. In order to model the behavior of the original line by means of the
single two-machine lines, proper parameters have to be calculated for the pseudo-
machines of each building block. Failure rates, repair rates and, eventually, speed of the
pseudo-machines of each building block have to be calculated by taking into account
the whole system. In particular, the pseudo-machine parameters are chosen so that the
material flow in the buffers of the two-machine lines closely matches that of the
corresponding buffers in the original line.

Let us face the buffer allocation problem. The method we propose to solve the primal
problem starts from a minimal capacity allocation which does not allow the system to
satisfy the desired value P*. Then, it incrementally provides the line additional buffer
capacity until the target value P* is reached. This approach is based on an iterative
procedure leading to optimal or near optimal solutions if buffers to be enlarged at each
step are properly selected.



The main idea of the proposed method is to increase the capacity of a selected buffer Bs
so that the additional production rate thus obtained is greater or at least equal than it
would be gained by increasing any other buffer Bi of the line (with i=1,…,K-1 and i≠s).
In order to establish the rule for selecting the most appropriate buffer to be increased,
we analyze the production rate as a concave function monotonically increasing in NT. If
we also consider that the function P is continuous and differentiable, it is possible to
calculate the gradient gi:
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The buffer corresponding to the largest gradient gs=max{gi}i=1,…,K-1 represents the buffer
that determines the major enhancement of P for a small increment of storage capacity.
Since the function P is not explicitly known in a closed relation, it is not straightforward
to calculate the gradients gi and a numerical approach has to be adopted.

We calculate the gradient of production rate with respect to each buffer capacities on
the basis of the decomposition technique applied to the whole line:
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After this evaluation, the capacity of the buffer related to the largest gi is increased
and the production rate of the whole line is improved; all the process is repeated until
the target P* is reached.

Summarizing, the method is iterative: starting from an initial distribution of buffer
capacities, it evaluates the performance of the line by using the decomposition
technique [7]. Then, the gradients gi are approximately calculated respect to each buffer
by using the equation (3). At this point, the buffer related to the largest gradient is
increased by a fixed incremental quantity and the performance of the line are again
evaluated by taking into account the new buffer capacity. The method continues in such
a way until the production rate P is at least equal or greater than the target value. It is
worthwhile to note that the results of the last line evaluation are used as initial
parameters for the next decomposition thus strongly reducing the required
computational effort.

As in all iterative methods, an initial condition from which to start has to defined. We
propose to set the initial conditions of the algorithm equal to the lower bounds that
buffer capacities Ni have to assume for reaching the target value P*. These lower bounds
for each buffer Ni are equals to the minimal capacity that the two-machine lines, related
to each buffer, need to meet in isolation (that is, ignoring the propagation of blocking
and starvation phenomena inside the line) the production requirement. Therefore, by
imposing P* as production rate on each building block, the minimal buffer capacities
Ni

min can be easily calculated thus obtaining a good lower bound to solve the problem
(1).



The major improvement of the proposed method over existing techniques can be found
in a conceptual and computational simplification of the overall gradient approach that is
obtained preserving the accuracy of the results established in the previous papers.
Indeed, the gradient based techniques use the gradient of the production rate as a whole
to identify the best direction to follow in order to determine new solutions for all the
variables Ni. However, only the main derivatives (i.e. variations of the function P with
respect to the single buffer capacities) are represented by the gradient and, therefore, the
interdependencies between the variables Ni and their combined effect on the production
rate are not properly considered when the best direction is selected.
Finally, it is worthwhile to point out the following aspects concerning the proposed
method:
• the introduction of a good starting point or lower bound of buffer distribution, which

consists in the capacity that each two machine line would require to meet in
isolation the production requirement;

• the achievement of the optimal or near optimal buffer configuration starting from
the lower bound and proceeding by means of a series of incremental steps that does
never lead to exceed the target point;

• given a current buffer distribution, only one buffer is updated/increased at time and
its effect is immediately evaluated by means of a decomposition on the resulting
buffer distribution without introducing any further modifications.

The algorithm used for solving the addressed problem is reported the Appendix.

4. Numerical Results
On the basis of the numerical results obtained in a large number of experiments carried
out, it is possible to state that the algorithm always converges to a solution. The
proposed method cannot provide any guaranty to reach the optimal solution; however,
in all the experiments performed the algorithm converges to a buffer configuration that
is optimal or near-optimal.
In order to test the accuracy of the method, an exhaustive exploration has been carried
out to find out, for each considered test case, the buffer distribution that allows to reach
the production target minimizing the total buffer space allocated. Also in this case the
decomposition technique has been used to evaluate the system performance. The
exhaustive research of the optimal buffer distribution has been also motivated by a
substantially lack of reference cases in the literature above mentioned concerning the
continuous model of homogeneous lines.

Results on two different transfer lines are reported in the following tables. The first
analyzed system is a line composed of three machines. Machines can fail in only one
mode and the failure and repair rates are reported in Table 1 with also the efficiencies in
isolation mode. The same system has been analyzed by Gershwin and Schor [4] in the
discrete case. The two methods have been applied for different values of target
production rates; these values have been chosen in order to get incrementally closer to
the maximum throughput achievable by the system from case 1 to case 5.

M1 M2 M3

p 0.037 0.015 0.020
r 0.350 0.150 0.400
e 0.9044 0.9091 0.9524

Table 1: Three Machine Line Parameters



Table 2 reports the results of the proposed method (LMT) and the exhaustive research
(ER). LMT results are obtained by setting the increment ∆N equal to 0.1. The same
value corresponds also to the precision of the exhaustive research. It is possible to
notice from Table 2 that the solution provided by the proposed method is always near to
the optimal solution founded by the exhaustive research.

Case P* Method P N1 N2 NT

Nmin 10.56 0.06 10.62

LMT 0.8700 14.56 5.86 20.42
1 0.8700

ER 0.8700 13.97 6.50 20.47
Nmin 18.12 1.89 20.01
LMT 0.8801 22.72 8.99 31.712 0.8800
ER 0.8801 22.44 9.20 31.64

Nmin 34.85 4.87 39.72
LMT 0.8900 40.45 14.47 54.92

3 0.8900
ER 0.8900 39.69 15.30 54.99

Nmin 104.98 11.10 116.08
LMT 0.9000 112.48 28.20 140.684

0.9000
ER 0.9000 113.41 27.29 140.70

Nmin 398.44 16.11 414.55
LMT 0.9040 402.04 47.61 449.655

0.9040
ER 0.9040 401.60 48.05 449.65

Table 2: Three Machine Line Buffer Allocation

The second analyzed system is a line composed of four machines with parameters
reported in Table 3. Also in this case the method has been applied for different values of
target production rates, moving toward the maximum production rate.

M1 M2 M3 M4

p 0.050 0.0060 0.0454 0.0454
r 0.091 0.0526 0.0833 0.1429
e 0.645 0.8978 0.6471 0.7583

Table 3: Four Machine Line Parameters

Table 4 reports the results in this second case. The solution provided by the proposed
method is always near to the optimal solution founded out by the exhaustive research
excepted in the last case in which the target production rate is very close to the
maximum throughput of the line. Indeed, in this particular case, in which the production
rate is very near to the maximum throughput achievable by the system, the different
gradients calculated by the algorithm are very close. Since the way of evaluating the
gradient is approximated, it is difficult to select the proper buffer to be increased;
however, the error on the allocated total buffer capacity is lower than 1.4% calculated
on the optimal solution provided by the exhaustive research.



Case P* Method P N1 N2 N3 NT

Nmin 0.01 0.01 0.01 0.03
LMT 0.4953 5.81 7.51 4.71 18.03

6 0.4950
ER 0.4950 4.70 8.20 5.10 18.00

Nmin 0.01 0.01 0.01 0.03
LMT 0.5301 9.91 12.11 8.31 30.337 0.530
ER 0.5300 9.20 12.70 8.40 30.30

Nmin 0.01 0.01 3.84 3.86
LMT 0.5651 16.61 19.41 14.14 50.16

8 0.565
ER 0.5650 16.00 19.00 15.20 50.20

Nmin 0.01 0.01 12.38 12.40
LMT 0.6000 29.91 33.01 24.68 87.609

0.600
ER 0.6000 29.20 33.20 25.10 87.50

Nmin 38.69 33.51 50.87 123.07
LMT 0.6400 106.10 93.61 62.77 262.4810

0.640
ER 0.6400 100.00 89.00 69.90 258.90

Table 4: Four Machine Line Buffer Allocation

5. Conclusions
A new efficient algorithm for the allocation of storage capacity in serial production lines
has been developed. The heuristic proposed method is able to find out the distribution of
storage capacity between machines that minimizes the total buffer space assigned to the
line satisfying a desired production rate.
The main improvement of the proposed method over existing techniques can be found
in a conceptual and computational simplification of the gradient approach for buffer
space selection that is obtained preserving the accuracy of results.
In the paper the continuos model of homogeneous production lines have been
considered, but the extension of the approach to the case of deterministic, exponential
and non homogeneous line appears rather straightforward as suggested by some pilot
tests carried out. Further research is needed. Indeed, in order to evaluate the accuracy of
the proposed method more numerical results are needed.



Appendix

Algorithm

Step 1 Set initial conditions .
For i=1,…,K-1

Starting values of Ni
min are calculated from the single two-machine

lines defined by setting their pseudo-machine parameters equal to those
of the corresponding machines of the original line.

Set k=0.

Step 2 Evaluate the performance of the line .
Evaluate the performance of the line and the machine parameters of each
building block by using the decomposition technique described in [7].
Set k=k+1.

Step 3 Calculate the gradient.
For i=1,…,K-1

Calculate the gradient gi by using:
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Step 4 Select the buffer to be increased.
Increase the capacity of buffer Bs related to largest gradient value:

{ } ( )








∂
∂== −

−=−=
 ,..., 11

1,...,11,...,1
maxmax K

iKi
i

Ki
s NN

N
Pgg

Increase the capacity for the selected buffer:
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where the suffix k indicates the number of the iteration.

Step 5 Exit condition.
If P(k)<P* then go to step 2.
Else exit.
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