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Abstract- The problem of optimally controlling production in a single part unreliable transfer line subjected to a constant rate of demand for parts, while minimizing a combined measure of storage and production backlog costs, is considered. An analytic solution of the associated Hamilton –Jacobi – Bellman equations is beyond reach. Instead , the focus here is on a suboptimal class of decentralized hedging policies parameterized by a set of critical inventory levels, one for each machine in the transfer line. Thus, each machine strives  to achieve as quickly as possible a given critical level of processed parts  in the associated storage bin, which, once reached, it will attempt to maintain by producing exactly at the current rate of demand for parts until failure or starvation occurs. Once starvation ceases or the machine is repaired, it will resume the same production strategy. 

Our objective is to optimize the choice of the processed parts critical levels . For doing so, we introduce two decoupling approximations : the machine decoupling approximation aimed at simplifying the world upstream of a given machine, and the so-called demand averaging principle aimed at effectively shielding the machine from the precise instantaneous behavior of the machines downstream. After discussing the qualities of the approximations both in a theoretical context and numerically by means of comparison of approximation based theoretical calculations with Monte Carlo simulations, we illustrate the application of our decoupling approximations to the control of a two- machine Markovian unreliable flow shop.

1. Introduction 

With the introduction of mass production in the 1950’s, the issue of the role of inventory in between successive machines or machine groups in transfer lines has been central. Indeed, very early on, the dual consequences of the introduction of buffers/inventories within the transfer line  has been  recognized: on the one hand , their presence is beneficial in that they partially shield a given machine from the effects of machine failures upstream and from slowdowns downstream due to either  failures or part processing times variability; as such, they allow an increase in the average production rate of the machines. On the other hand , their presence means storage space and capital  immobilized  within the factory, and from that point of view, their size should be kept under control. Determining the right balance between these two contradictory effects  has been a long standing goal.

Buzacott (1967) analyzed discrete models of transfer lines . Given the complexity of optimizing buffer levels in long transfer lines, the idea of reducing the analysis - at the cost of some loss in accuracy – to that of a collection of smaller, albeit coupled , subproblems was  attractive. This was the impulse behind so-called decomposition techniques . For an excellent survey of the subject, see Dallery and Gershwin (1992). Starting with Gershwin  (1987), a series of works on decomposition techniques have followed, which brought gradual computational improvements and further generality to this original work. Let us mention Dallery, David and Xie (1988), (1989), Di Mascolo, David and Dallery (1991), Burman (1995) and Gershwin and Burman (2000).

While the above decomposition techniques have treated with equal importance problems of machine starvation and machine blocking inherent to finite work – in – process 

Buffers, and proceeded to a grouping of production units into blocks of two successive machines separated by a buffer zone, the technique presented here amounts to focusing, first and foremost, on the impact of storage on starvation  phenomena  within the transfer line. The basic unit in the decomposition is the individual machine.

We consider an unreliable transfer line  under a class of so-called decentralized hedging policies (a continuous flow analog of Kanban policies ). As is usual in control theoretic approaches (Kimemia and Gershwin (1983), Presman Sethi and Zhang (1995)), the objective is to minimize  a cost functional dependent on the chosen control policy. The proposed decomposition policy rests on two approximations ideas: The machine decoupling approximation and the so-called demand averaging principle. It is worthwhile noting that decompositions in tandem machines under variable threshold centralized hedging policies were considered in Hu (1995a). The approach in Hu (1995 a)  is based on attaching an “equivalent” cost to starvation phenomena based on an estimation of the backlog costs they may provoke. To the best of our knowledge, no extensive numerical tests on tandem machines or generalizations of this approach to n machines ( n ( 2 ) were ever reported. In the current approach, starvation is never directly associated with any cost , and the control laws are strictly decentralized (which reduces the complexity of computations , implementation, and potential generalizations to n machine transfer lines, n ( 2 ).

The rest of the paper is organized as follows. In Section 2, we present the mathematical model of the unreliable transfer line  and define precisely the class of control policies of interest . Section 3 is the heart of the paper where our decomposition / approximation principles are developed . The transfer line decomposition resulting from the principles in Section 3 is developed in Section 4 for tandem machines , while the hedging levels optimization procedure is discussed in Section 5. In Section 6, we report numerical results both on the numerical optimization procedure and the accuracy of the decomposition based theoretical computations as tested against results from Monte Carlo based simulation runs  under the same conditions. Appendix A is devoted to reporting results of extensive numerical experiments on the demand averaging principle . Section 7 is the conclusion. Note that  once our decomposition technique is established, we rely on single machine machines analyses of Hu (1995a), Bielecki - Kumar (1988) and Sharifnia (1988), as well as first passage-time computations as developed in Malhamé (1993) and El- Férik and Malhamé (1997). For briefness, the related equations are not reported here. They will be in a more complete version of this paper to appear elsewhere.

2. Mathematical model of the transfer line, performance functional, and the class of production policies 
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Figure 1: Transfer line with M unreliable machines, intermediary and finished parts inventory.

We consider a fluid model of production in an M unreliable two-state Markovian machines single part transfer line, subjected to a constant rate of demand for parts. The machines model is consistent with Kimemia and Gershwin (1983). (i is the ith machine binary mode.

Furthermore, the following assumptions / definitions are made :

· The first machine is never starved.

· Production rates ki  , i = 1, .., M are such that :

k1 ( k2 ( … ki ( … ( kM 
This is to insure that the production ability of a given machine not be systematically limited by the maximum production rate of the machines upstream.

· Let xi (t) designate the instantaneous level of work  in  process  in the storage bin downstream of machine Mi  , i = 1, .., M-1. Let xM (t) denote the inventory of finished parts when non negative, and -xM (t) the backlogged demand whenever production lags behind demand. No backlog is allowed for i = 1, .., M-1 . We assume a piecewise linear cost structure. Let ci be the instantaneous storage cost per unit xi , i = 1, .., M –1. Also let cM+ be the instantaneous storage cost par unit inventory max (xM  ,0), and cM-  the cost per unit backlog max (-xM  ,0).

Let ui (t) denote the instantaneous production rate of machine Mi . Work in process    xi (t) ,i = 1, .., M-1, evolves according to :

d xi /dt  = ui (t) - ui+1 (t)                (1a)

with the constraint  xi (t)  ( 0 , while

d xM (t)/dt = uM (t) - d                  (1b)

· We shall assume an isolated machine demand feasibility condition :

(ri /( ri + pi )) ki  ( d               .

In general, the aim is to develop feedback  control policies on system hybrid state :

[ xT , (T ]T = [ x1 , x2 ,…, xM , (1 , (2 , …,(M ]T , 

which minimize the long term average cost:
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For ergodic control laws, the above performance functional will be independent of initial conditions.

Inspired by Gershwin and Kimemia (1983), and Bielecki-Kumar (1988), we look for optimality within a restricted, but parameterized class of feedback control policies : that of so-called decentralized hedging policies (DHP’s).

Each machine, say Mi, is associated with its own critical level of work in process, denoted zi , hereon referred to as the ith hedging level. Whenever able to produce (i.e. operational and not starved), machine Mi  will produce at maximum peak rate ki, until xi  reaches zi . Thereupon, Mi  will produce just at the rate ui+1 (t) , so as to maintain xi  at level zi  (we set uM+1 (t) = d ).

This class of control policies mimics in a fluid model context the celebrated Kanban policies introduced by Toyota in the 1980’s. The zi ’s  are analogous to Kanban sizes.

Our long term objective is to develop efficient techniques to optimize the hedging levels zi , i = 1 ,…, M, for M ( 2, with respect to performance measure (2) . However , in this paper , we shall suffice with studying the M = 2 case. 

Our optimization approach attempts to capitalize on precise analytical results obtained for the much simpler problem of single machine optimal control, via an approximate representation of the transfer line as a collection of isolated machines 
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 has its reliability adequately weakened to account for starvation effects. 

The decomposition technique presented here rests on two decoupling approximations which we now discuss in detail.

3. Decoupling approximations

3.1 The machine decoupling approximation

This approximation aims at efficiently summarizing the impact of the world upstream of a given machine on the operation of that machine. In the context of tandem transfer lines , the world upstream of a given machine acts like an unreliable supply of parts. Thus for example, from the point of view of the ability of machine M2  to produce, what matters is the value of the binary supply state I1 (t) = I [ (x1 (t) ( 0) ( (x1 (t) = 0, (1 (t) = 1)] where

I [.] is the indicator function. The Machine decoupling approximation  (MDA) states the following:

“Binary supply state Ii (t) is a random process which is independent  of machine Mi+1 operating state     (i+1 (t) ” , for i = 1, ..., M-1.

Clearly, in reality, Ii (t) is not strictly independent of (i+1 (t) if only at instants where Ii (t) switches from 1 to 0 , because at such instants (i+1 (t) can only be 1. However, what MDA asserts is that the coupling is very weak . Note that MDA holds exactly on during the OFF portions of the cycles of Ii (t)  , because duration of these portions is strictly linked with the memoryless repair time of one or more machines upstream  of  Mi+1  , and that duration is totally independent of (i+1 (t) . Thus , if Ii (t) can be assimilated to a two-state or multi-state Markov chain , then by virtue of MDA , Mi+1  could be viewed as as an isolated machine Mi +1 with mode (i+1 (t) evolving on the Markov chain defined on the product space of Ii (t) and (i+1 (t) .

3.2 The demand averaging principle

For a constant rate of demand for finished parts d, every machine in the transfer line will be responding under stationary ergodic controls, to the same average rate of demand d. The aim of the demand averaging principle is to use this observation to achieve  a compact representation of the effect of machines downstream of a given buffer i, on the dynamics of the associated storage level xi (t) and supply state Ii (t) . In effect, it will allow us to develop a simple model of the evolution of xi (t) and Ii (t) , and eventually achieve a Markov chain representation of the dynamics of the latter.

Let us then assume ergodic decentralized  hedging point controls have been applied . Let di (t) denote the (stochastic) rate at which parts are drawn from buffer i by machine Mi, and let di +(t) be the restriction of that process on time intervals where Ii (t) = 1 (parts are available). Let 
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 denote the steady-state value of E[di +(t)]. Let   ai(t) = E [Ii (t) ] be define d as the instantaneous availability coefficient of supply xi (t), and let ai be its steady-state value. Then the demand averaging principle (DAP) states the following:

“ Under ergodic decentralized hedging controls in a transfer line subjected to a constant rate of demand for parts d, the steady-state mean value of stock level xi (t) over the active portions of the supply cycle  (Ii (t) =1 ), and the steady-state mean length of the active portion of that cycle ,  both depend on the steady-state mean demand process di+(t) , di+, but are not affected  by its higher order statistics”  .

Thus, what DAP states is that the real demand process  di (t) could be replaced during the active portions of the xi  supply cycle by an appropriate constant level di+ without affecting either the mean of xi (t) over the active portion of the supply cycle or the mean duration of that portion. In addition, given that the mean of the di (t) process must be d , we have:
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Thus: di+ = d / ai   .

The consequences of DAP are profound, because it states that in an average sense, the cost associated with the operation of a machine Mi and its storage xi (t) is independent of the specifics  of machines downstream.  To the best of our current knowledge, DAP is an approximation . Partial theoretical arguments backing this approximation are reported in  (Mbihi , Malhamé, Sadr 2000) . Also in the appendix, DAP is tested numerically against the results of Monte Carlo simulations for a diversified set of machine and demand parameters , and conclusions are drawn as to its domain of acceptability.

In the context of a two machine transfer  line, DAP helps us achieve two goals: Because demand di (t) is replaced by an appropriately chosen constant, the cost at machine M1 can be analytically computed using existing single machine theory (Hu 1995 b) . In addition, the mean and higher order moments of durations of the active portion of the x1 (t) supply cycle can be computed using first return time computations as developed by Malhamé(1993) for single Markovian machines. If need be , Padé approximants can subsequently be used to develop a Markovian representation of the first return time (El-Férik and Malhamé 1997) . Note that the inactive portion of the supply cycle is exponential as it coincides with a failure of machine M1. By combining the Markovian representations of the active and inactive portions of the x1 supply cycle, a Markov chain representation of I1 (t) is achieved. At this stage, the MDA allows a direct combination of the I1 (t) Markov chain with that of the mode of machine M2 , to yield a representation of machine M2 , subjected to an unreliable supply , as an isolated  multi-state Markovian machine M2 , having access to a fully reliable supply. Single machine multi-state  Markovian machine theory can subsequently be used on M2 to compute the optimal cost attachable to inventory x2 for a given hedging level z1 at machine M1 (Sharifnia 1988). For lack of space, details are omitted.

4. Isolated Markovian machine equivalents of M1  and M2.

4.1 The case of machine M1 .
By virtue of DAP, machine M1 can be viewed as a machine with a fully reliable supply, subjected to a constant rate of demand d/ a1 over the active portion of the x1(t) supply cycle and with no backlog allowed , where a1 is unknown as yet . Furthermore, given that a1  is comprised between 0 and 1 , and that it is in direct relation with z1 , we shall prefer  a1 as a design variable for optimization . In fact, from Hu (1995b) and DAP, we can write :
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Note that in (3), the demand rate has been replaced by d1+ = d / a1 . From (3) , z1 can be obtained from a given a1 . If one then solves for z1 in terms of a1 , substitute in the expression for storage cost associated with parts x1 (Hu (1995b)), the result is as follows :
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Thus , by DAP, J1(a1) is the long term cost of maintaining a coefficient of availability  for stock x1. 

4.2 Markovian representation of I1(t) and machine M2

Successive sojourn times of I1(t) at value 1  coincide with the active portions of the x1(t) supply cycle and correspond to first return times of the x1(t) process to the zero level . While DAP guarantees only that the mean durations of the on part of the I1(t) cycle can be obtained from a study of the active portions of the x1 process (subjected to a constant demand),we shall use the same  process to carry out an estimation of the higher order moments of these ( random) durations .

Malhamé (1993) and subsequently El-Férik and Malhamé (1997) have shown that one dimensional continuous stochastic processes with piecewise constant velocities where velocity changes coincide with the jumps of a finite Markov chain , are such that all moments of first passage-times of the process to a given level , and in particular first return-times to zero, can be obtained from a system of coupled linear differential equations in the space variable, and appropriate initial and boundary conditions. In the case of x1, this yields the following expressions for the second moment, say (2 of the first return time of x1 to zero, say T00(1) for a given hedging level  z1(a1): 
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where in (5) v1 = (k1- (d / a1)) , and v2 =  (d / a1) and z1 is related to a1 through Eq. (3). The above expression was obtained using MAPLE software. In addition, from the key renewal theorem a1 = (1(a1) / ((1(a1)+(1/r1)) , and thus (1(a1) = a1/ r1(1-a1)  . Analytical expressions of higher order moments (i(a1) ( i ( 3) have also been computed in all generality , but are too complex to report  here.

Based on  Eq. (5), it is possible to compute a measure of distributional distance between   T00(1)  and an exponential with rate parameter  1/(1(a1). One such measure is by the so-called coefficient of variation (see Griffiths  ). Thus for T00(1) , the coefficient of variation is given by :

C2(a1) =  ((2(a1) –((1(a1))2)/ ((1(a1))2
According to this measure, an arbitrary distribution could be considered as quasi-exponential if its coefficient of variation is close to one. We report below results for coefficients of variation using the data for what will become further down our nominal system S1 in the numerical tests of the proposed optimization methodology ( See Section for data). 
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Figure 2. Coefficient of  variation of supply  availability periods (Nominal System  S1) as a function of availability coefficient for stock x1  .

Fig. 2 indicates that for system S1, in the range of availability coefficient from .8 to .96, T00(1) can be considered as quasi-exponential. Notice that if need be , higher order Markovian representations of T00(1) can be constructed via Padé approximants (El-Férik and Malhamé (1997)). Thus, if T00(1) can be considered exponential, and given that I1(t) = 0 coincides with (exponential) repair times of machine M1, it is possible  to model the supply availability process as a two-state Markov chain with failure rate

ps = (r1( 1- a1))/ a1  , and repair rate r1. Otherwise, an order higher than two Markov chain representation of I1(t) is possible. 
Machine M2  can now be represented as an isolated  multi-state Markovian machine with a fully reliable supply .  Indeed, by virtue of MDA ,the corresponding Markov chain is obtained as a product of the I1(t) Markov chain and that of the machine operational state . Thus, for a given a1 , the cost associated with the optimal hedging level for machine M2 , can be obtained via a subsidiary optimization problem based on the (Sharifnia 1988 ) analysis, of a multi-state machine with backlog allowed. Let J2*( a1) be the corresponding  optimal cost.

The global cost is then expressed as follows as a function of a1 :

J( a1) = J1( a1) + J2*( a1)                     (6)

In (6) , a1 becomes the scalar value to be optimized . Optimization could be achieved via a gradient type of algorithm . Notice that a1  cannot go below a certain threshold a1min  whereby the ability of machine M2 to meet the demand d could be jeopardized. In fact:

k2 a1min( r2/ (r2 +p2)) = d                       (7)

Thus the cost in (6) is to be optimized for a1min (  a1  ( 1  . It is possible to show that , without loss of optimality , the above search interval could be reduced to a closed subinterval of (a1min ;1).  Given that function J1( a1) is continuous , and the search interval is compact , if J2*( a1) is continuous , an optimum a1* should exist . The optimum will be unique if individual costs J1( a1)  and  J2*( a1) are strictly convex functions of a1. 

6. Numerical results

In the numerical experiments below, we have considered  a nominal two-machine case hereon designated S1 with the  following     parameters :      k=(2.5  2)T,  r=(0.4   0.6)T,      p=(0.1  0.3)T,  c1= 2  ,    c2+ = 2  , c2– = 10 .

6.1 . Theoretical decomposition based cost curves as work in process availability coefficient varies from  minimum to one and storage at M2 is optimized .
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Figure 4 . Nominal System S1  with storage costs for parts x1 and x2  computed for the coefficient of availability of work-in-process x1 varying from 0 to 1 , and hedging level z2 optimized for the given a1 .

6.2 Extensive Monte Carlo based testing of theoretical performance curves for S1 . 
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Figure 5. Monte Carlo based evaluation of storage costs for parts x1 and x2 compared with that obtained from theoretical decomposition based computations  for the same choices of hedging levels z1 and z2 ( Nominal system S1 ) .

 6.3  Optimization results via the decomposition approach.

Below are results of our hedging levels optimization procedure . Besides S1 , two other parameter sets have been considered and are defined in Table 1. Note machines associated with S2, are more reliable than  those  with S3 , which are themselves more reliable than those with S1 .

	Sample  systems
	                                                                      Data

	
	   k1
	   k2
	   d
	   r1
	    r2
	   p1
	   p2
	   c1
	  c2+
	  c2-

	            S1
	   2.5
	   2
	   1
	  0.4
	   0.6
	  0.1
	   0.3
	   2
	   2
	  10

	            S2
	   2
	   2  
	   1
	  0.5
	   0.5
	  0.1
	   0.1
	   2
	   2
	  10

	            S3
	   2
	   2
	   1
	  0.4
	   0.4
	  0.1
	   0.1
	   2
	   2
	  10


Table 1 : The nominal two-machine system parameters and variations theroff.

	
	amin
	a*
	Z1*
	Z2*
	DHP method

(Predicted costs)
	Monte-Carlo  simulation

( Costs)

	S
	
	
	
	
	J1*
	J2**
	J**
	J1*
	J2**
	J**


	S1
	0.80
	0.95
	3.76
	6.71
	6.39
	16.19
	22.58
	6.23
	17.16
	23.39

	S2
	0.75
	0.95
	2.63
	2.63
	2.23
	8.68
	10.92
	2.00
	10.03
	12.03

	S3
	0.80
	0.95
	3.93
	4.12
	3.26
	12.33
	15.59
	2.95
	14.54
	17.49


Table 2: Optimal costs as obtained from decomposition approach and compared with Monte Carlo based estimates using optimal hedging levels z1* and z2* .

From Table 2 , it is possible to make the following remarks:

· The optimal value of availability coefficient at x1 appears to be 0.95 for the three cases. This is probably more an indication of the proximity of the sample systems analyzed rather than any inherent optimality with this value.

· The lowest cost is associated with the most reliable set of machines ( S3 ) .

· The highest relative error between total cost and that of obtained from Monte Carlo simulation runs under the same conditions is on the order of 10%. Such errors are in all likelihood due to the fact that the above theoretical calculations were based on using d and not d/a1 as a demand process during the active portion of the x1 supply cycle.
 7. Conclusion

We have developed a decomposition technique for unreliable tandem machine manufacturing systems . The decomposition is based on two decoupling approximations : The machine decoupling approximation , and the demand averaging principle. The latter appears to have far reaching consequences in that it indicates that if in a transfer line , the rate of demand for parts is a given constant, storage cost for the buffer filled up by a given machine strictly depends on the reliability of that machine and starvation phenomena due to machines upstream , but are not affected  by the specifics of machines downstream , as long as demand is met on the average. This results in great simplification of the analysis. Current work is concerned with details of a generalization of the decomposition/optimization procedure to n machine transfer lines ( n ( 2) .
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Appendix A. The demand averaging principle: Numerical experiments. 

In the following , we report relatively extensive numerical tests on the validity of the demand averaging principle . Theoretical estimates of  the availability coefficient a1 well as the mean value of x1 based on the demand averaging assumption, are compared to the results of Monte Carlo based estimation for the  given hedging levels z1 and z2 . In testing the performance of DAP we attempted to incorporate cases  where:

· inventory x1 has a high coefficient of availability (machine M1 is relatively reliable)

· inventory x1 has a low  coefficient of availability (machine M1 is not very reliable)

· demand rate is close to the ergodicity  limit for the transfer line,

· demand rate is well within the average production capacity of the transfer line.

For cases 1,2,3,4,5 , the data is as follows :

P1 = P2 = 0.1, r1 = 0.3 , r2 = 0.6 , k1 = 2.5, k2 = 2 .

Note that with the above data,  the highest demand that could be sustained by M1 alone is 1.875.

For case  6  (M1 is highly unreliable and a1 is estimated theoretically at 0.5) , the data is:

P1 =0.3 , P2 = 0.1, r1 = 0.1, r2 = 0.5, k1 = 4.8, k2 = 4.5 .

Note that for the above case, the highest demand that could be sustained by M1 alone is 1.2 .

	Case
	a1
DAP
	a1
Monte carlo (MC)
	d
	z1
	z2
	
[image: image12.wmf])

~

(

E

1

x


DAP
	E(x1)

MC

	1
	0.85
	0.851
	1.5
	3.68
	50
	2.5
	2.45

	2
	0.85
	0.852
	1.5
	3.68
	10
	2.5
	2.47

	3
	0.85
	0.855
	1.5
	3.68
	2
	2.5
	2.48

	4
	0.999
	0.9985
	1.5
	48.47
	10
	41.93
	42.4

	5
	0.9
	0.899
	0.8
	2.90
	2
	2.32
	2.26

	6
	0.9
	0.899
	1.5
	6.76
	10
	4.65
	4.4

	7
	0.5
	0.57
	1.1
	10.6
	5
	3.7
	4


Table 3. Comparison of demand averaging principle based theoretical evaluations of availability coefficient and mean work in process level with the results of Monte Carlo simulation runs under the same conditions.

Based on the results in Table 3, the following observations can be made:

· In the first three numerical experiments everything remains the same except the hedging level z2 at machine M2. This hedging level has a direct impact on the instantaneous demand rate that machine M2 will impose on the inventory x1(t). It is seen that estimates of availability coefficient a1 and mean work in process level are totally unaffected. This consistent with the statement that they depend only on the mean demand rate during the on parts of the supply cycle which is invariant with respect to z2 .

· Results are mostly very good ,except for case 6 where machines are operated very close to their ergodicity limit (demand is 1.1, 0.1 away from the limit). It is worthwhile noting that under these conditions, the convergence of Monte-Carlo runs becomes very slow and some inaccuracies in the results are to be expected. At any rate, in this case, the estimation error on a1 is around 14%. The next worst case error occurs in case 5 , for the mean storage level. It is on the order of 5%. All other estimates are within 1 %.

· In all cases studied , demand was fairly high , except case 4.
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