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1 Introduction

A closed-loop production system or loop is a system in which a constant amount of material flows through
a set of work stations and storage buffers alternately in a fixed sequence, and when it leaves the last buffer,
it reenters the first machine. Figure 1 represents a K-machine loop. The purpose of this paper is to present
a new analytical method for evaluating the production rate and the distribution of inventory.
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Figure 1: Illustration of a closed-loop production system

The first analytical method for evaluating the performance of closed-loop systems with finite buffers and
unreliable machines was proposed in (Frein et al., 1996). This method is an extension of the decomposition
method developed by (Gershwin, 1987). This method is only accurate for large loops because it does not
account for the correlation between number of parts in the buffers. (Maggio, 2000) presents a decomposition
method which does account for this correlation. However, the model is more complex and is not practical for
loops with more than three machines. For a more detailed listing of previous work dealing with closed-loop
systems, see (Maggio, 2000).

2 Closed-Loop Production Systems
2.1 Basic Model

We extend the deterministic processing time model presented in (Gershwin, 1994) to closed-loop systems.
More specifically, we use the (Tolio and Matta, 1998) version, which allows machines to fail in more than one
mode. Processing times for all machines are assumed to be deterministic and identical, and the operation
time is the time unit. Machine failure and repair times are geometrically distributed.

M; refers to Machine i. B; is its downstream buffer and has capacity IV;. A machine is blocked if its
downstream buffer is full and starved if its upstream buffer is empty. When M; is working (operational
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and neither blocked nor starved) it has a probability p;; of failing in mode j in one time unit. If M; is
down in mode j, it is repaired in a given time unit with probability r;;. By convention, machine failures
and repairs take place at the beginnings of time units and changes in buffer levels occur at the ends of
time units.

2.2 Transfer Line Decomposition Techniques

Accurate decomposition methods have been developed for evaluating long transfer lines (Gershwin, 1994).
These methods decompose a K-machine transfer line into K — 1 two-machine lines or building blocks. In
each building block L(i), the buffer B(i) corresponds to B; in the original transfer line. The upstream
machine M"(i) represents the collective behavior of the line upstream of B; and the downstream machine
M4 (i) represents the behavior downstream.

To an observer sitting in B(%), M" (i) appears to be down when M; is either down or starved by some
upstream machine. M*"(7) is said to have real failure modes corresponding to those of M; and wvirtual
failure modes corresponding to each of the upstream machines (Tolio and Matta, 1998). Likewise, M¢9(i)
has real failure modes corresponding to those of M; 1 and virtual failure modes corresponding to each of
the downstream machines.

In order to estimate the system performance, we must find values of the virtual failure probabilities,
i ;(1) and p%,j(z'), parameters of M*(i) and M%(q). Pk j(1) is the observer’s estimate of the probability
of machine M"(%) failing in mode (k,j). The goal of the decomposition equations is to determine the
parameters of M*(i) and M%(i) such that the flow of parts through B(i) mimics that through B;.

Although the observer does not know this, mode (k,j) corresponds to mode j of machine My. If My
is upstream of M;, this is a virtual mode. If k = 4 this is a real mode. (Similarly for M9(i).) The
concepts of range of starvation and range of blocking (Section 2.6) eliminate the ambiguity of “upstream”
and “downstream” in a loop.

2.3 Special Characteristics of Closed-Loop Systems

In a transfer line, blocking and starvation can propagate throughout the entire system. If the first machine
fails, it is possible for all of the downstream machines to become starved. Similarly, if the last machine
fails, all upstream machines can become blocked.

This is not the case in loops. Whether or not a machine can be starved or blocked by the failure of
another machine depends on the number of parts in the system and the total buffer space between the two
machines. For ease of notation, we define all subscripts to be modulo K. In particular, we define the set
of integers (i, j) as:

. 5,1+ 1,...,7 ifi<yg
(4, 5) :{ Ez’,z’+1,...,fg,1,...,j) if i > j (1)

We define NP to be the total number of parts in the system and ¥(v,w) as the total buffer capacity

between M, and M, in the direction of flow (Maggio et al., 2000). More formally,

Z N, ifv#w
U(v,w) =1 zeww-1) (2)
0 fv=w

Note that if v # w, the total buffer space is given by
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\I}(U,’w) =+ \If(w,fu) = Z Nz + Z N, = Z Nz — Ntotal
z€(v,w—1) z€(w,v—1) z€(v,v—1)

If N? < ¥(v,w), then the failure of M,, can never cause M, to become blocked because there are
not enough parts in the system to fill all buffers between M, and M, simultaneously. Conversely, if
N? > ¥(v,w), M,, cannot starve M,,.

2.4 Thresholds

Whether or not a machine can ever be starved or blocked by the failure of a specific other machine may
depend on the number of parts in an adjacent buffer (Maggio et al., 2000). We define the threshold (i)
to be the maximum level of B; such that all buffers between M;,; and My can become full at the same
time. Alternately, we can think of [;(7) as the maximum level of B; such that the failure of M}, can cause
M; 11 to become blocked.

Cousider building block %, shown in Figure 2, and assume that machine M;; can be blocked by machine
M. This means that M¢(i) has a virtual failure of type (k,5) (where j indicates one of the failure modes
of machine My, j = 1,..., F}) with probability p¢ ;(1). Because of the population constraint, if buffer B;
has too many parts, the remaining parts cannot fill all the buffers between M;; and Mj. Therefore, if the
level of the buffer is greater than threshold l,‘i(i), then a failure of My cannot cause blocking of machine
M1 so pgj () is 0. Generalizing, machine M}, could produce blocking on machine M;;; and therefore it
could affect M4(i) only if the level of buffer B(3) is less than or equal to I¢(i). A similar argument holds for
the starvation of M;. Machine M, could produce starvation at machine M; (and therefore it could affect
M™(3)) only if the level of buffer B(7) is greater than or equal to I%(7).

The threshold [¢(i) is the largest number of parts in buffer B; that allows all the buffers between M; 1
and M}, to be full at the same time. In that case all the buffers between My and M; would be empty.
Similarly, threshold [} (i) represents the smallest number of parts that allows all the buffers between Mj,
and M; to be empty. Therefore, we can write [¥(i) = [%(i) = l;x(i). The value of the threshold does not
depend on the failure type but only on the buffer capacities between machines M;,; and M} and on the
number of parts in the system NP.

Let n(t) indicate the number of parts in buffer B(i) at time ¢. Then,

e if n(t) < lx(i) then M*(i) cannot be down in virtual mode due to a failure j of machine M. Therefore
n(t) < 15(i) — pi;(6) = 0.

o if n(t) > Ix(4), pj;(i) # 0 has to be determined.
o n(t) > (i) — pi(i) =0

e if n(t) < Ik(i), pﬁj(i) # 0 has to be determined.

Since p; (i) and ¢ ;(4) depend on n(t), the two-machine line is much more complicated than earlier versions.
Worse, there may be more than one threshold in buffers of loops having more than three machines.
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Figure 2: A loop system and one building block

2.5 Loop Transformation

It is possible to eliminate the complications in the two-machine building blocks due to thresholds by using
a transformation procedure. The transformation allows us to evaluate much larger loops for a wider range
of population levels and buffer sizes than is possible using the method presented in (Maggio et al., 2000).

For each threshold 0 < I(z) < N;, we insert a perfectly reliable machine My« into buffer B; such that
U(k*, k) = NP. B; is now replaced by a buffer of size N; — (i) followed by My« followed by a buffer of size
Ik (7). Since each unreliable machine can cause at most one threshold between zero and N;, the transformed
loop will consist of at most 2K machines. Although the loop is larger, we can now use the same building
block that is used in Tolio’s transfer line decomposition — without the complication of thresholds.

2.6 Fixed Population Considerations

Once the loop is transformed, we account for the limited propagation of blocking and starvation due to a
fixed population level by defining the range of starvation and range of blocking. The range of starvation of
B; is {M(;y, My(i)41, -y Mi}, where M; is the machine farthest upstream which can cause B; to become
empty if it is failed for a long period of time. Similarly, the range of blocking of B; is {M;1, M;i2, ...,
My}, where My;) is the machine farthest downstream which can cause B; to become full. We calculate
M) and My as follows:!

Ms(z) = minj Mi+j s.t. \P(’i,’i +]) > NP (3)

'Note that the inequalities are strict. We use this convention to deal with the situation of simultaneous blocking and
starvation.
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Mb(i) =max; M;;ji1 st U(+1,i+5+1) < NP (4)

The loop population is incorporated into the model by including in the building blocks only those
virtual failure modes related to machines within the range of blocking and range of starvation. M (i) has
virtual failure modes corresponding only to the failure modes of M,;) through M;_;. Likewise, M 4(4) has
virtual failure modes corresponding to M; o through M.

Simultaneous blocking and starvation If ¥(v,w) = NP then machine M, can become simultaneously
blocked and starved when M, is down for a long period of time. This is the case where the threshold
ly(v—1) =0 and l,,(v) = N,. In transformed loops, this situation can occur at each reliable machine M«
when M}, fails since ¥(k*, k) = N? by construction.

The two-machine building block developed in (Tolio et al., 2001) does not account for the states where
both machines are down and the buffer level is either zero or N. Rather than modifying the building
block, we associate the zero buffer level case with an upstream failure and the N buffer level case with a
downstream failure.

3 Loop Decomposition

3.1 The Building Block Parameters

As shown in (Maggio et al., 2000), the failure and repair probabilities for the real failure modes are equal
to the probabilities of the corresponding modes of the machines in the loop. Therefore, we have

pi; (1) = pij (5)
riz(8) = rij (6)
pg—kl,j('i) =DPit1j (7)
Tg—l—l,j('i) =Titl,j (8)

In addition, we know that the probability of repair when a machine is down in virtual failure mode
(k,j) is equal to the probability that machine My, is repaired when it is down in failure mode j. This gives
us

Tki(8) = Tk (9)

d .
rej (1) = Tkj (10)
To evaluate the performance measure of the loop, we must find the virtual failure probabilities Dkj (1)
and p%j () for each L(¢). This is the objective of solving the decomposition equations.

5
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3.2 Decomposition Equations

The decomposition equations are nearly identical to the transfer line decomposition equations presented
in (Tolio and Matta, 1998). In fact, we need only modify the indices to account for the range of blocking
and starvation and the fact that loops contain as many buffers as machines.

We define P,‘c”;(z) as the probability that B(7) is empty due to M (%) being down in virtual failure mode
(k,j). Likewise, P,fé(z) is the probability that B(i) is full due to M%(i) being down in virtual failure mode
(k,7). Finally, we define E(i) to be the average throughput of building block L(7). Using this notation,
we write the decomposition equations. Recall from Section 2.6 that s(i) is the number of the machine
furthest upstream which falls within the range of starvation of buffer B;. Similarly, b() is the number of
the machine furthest downstream which falls within the range of blocking of B;. Then,

Fori=1to K', k=s(i) toi—1,Vj:

Pet(i — 1)
U () kj .
pk] (Z) E(Z) Irk] (11)
Fori=1to K',k=1i+2tob(i—1),Vj:
PP(i+1)
d (n __ "k

We know the values of ri; from the parameters of the machines in the transformed loop. By solving
the building block transition equations presented in (Tolio and Matta, 1998) for each L(7), we can find the
values of P,j;(z), P,fé (4), and E(i), which are functions of py,(i) and pgj (7). The decomposition equations
(11) and (12) represent a system of 2K’ independent equations in 2K’ unknowns.

4 Implementing the Loop Transformation and Decomposition

This section provides a step-by-step procedure for evaluating a loop. First, we transform an arbitrary loop
into one without thresholds. Next, we introduce a set of decomposition equations and an algorithm which
is a slight modification of that of (Tolio and Matta, 1998) for solving them.

4.1 The Transformation Algorithm

1. For all N; > NP, set N; = NP. For all N; > N0l _ NP set N; = N _ NP (In this case we add
N; — Ntotal _ NP to the resulting average buffer level in order to recover the true average buffer level
for B;).

2. Insert a perfectly reliable machine M;, for every unreliable machine M; such that ¥(i%,i) = NP
(unless a machine M; such that ¥(j,7) = NP already exists). The new loop consists of K’ machines
separated by K’ buffers. Note that the size of the buffers may be different from the original buffers,
but the total buffer space in the transformed loop is equal to that of the original.

3. Re-number the machines and buffers from 1 to K'.

4. For all N; =1, set N; = 2 (see Section 5.2).
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4.2 The Decomposition Algorithm

1. Calculate the range of starvation and range of blocking for each L(z) using (3) and (4) to determine
all possible failure modes.

2. Initialize p;(4), r3;(4), p;-iﬂ’j(i), rfﬂ’j(i), T}, (1), and r,‘fj(i) for all valid failure modes using equations
(5), (6), (7), (8), (9), and (10). Set pj;(i) = pi; and p§;(i) = pi;-

3. Fori=1to K"
— Calculate E(i) and P,j]t(z)
—~ Update pj;(i + 1) using (11).

4. For i = K' to 1:
— Calculate E(i) and P,é’é(z)
- Update p%j(z’ — 1) using (12).

5. Repeat 3 and 4 until the parameters converge to an acceptable tolerance.

5 Performance of the Method

5.1 Three-Machine Loops

Numerous experiments on three-machine loop systems have been carried out in order to test the accuracy,
convergence and speed of the new solution technique (Maggio, 2000), (Maggio et al., 2000). We take an
average of the throughputs of each building block and compare the results with those obtained running
a discrete event simulation. To ensure statistical significance, the length of simulation was chosen to be
10,000,000 time units. The first set of experiments considered symmetrical systems, in which the three
machines are identical and all the buffers have the same capacity. The second set of experiments considered
systems with identical machines but different buffer sizes. The third set examined a loop with different
machines and identical buffers and the last set dealt with a completely asymmetrical closed line.

From the comparison of the analytical results with those from simulation, the method seems to be
accurate. The error for the throughput was always less than 1.24%. The error in the average buffer level
was almost always less than 3%, but it increased when the machines were not balanced or the buffers were
different. Furthermore, the decomposition procedure converged in every case.

5.2 Larger systems

The method was tested extensively on three- to ten-machine loops with machine parameters and buffer
sizes generated randomly. For each loop, the decomposition and simulation were performed for all possible
population levels. Here, we examine the accuracy, convergence reliability, and speed of the method.

Comparison with Simulation The method gives extremely accurate (error of less than 1 percent)
approximations of average throughput when the number of parts (or holes) is greater than the number
of machines and/or the size of the smallest buffer. Average buffer level errors were normally less than 1
percent in this range, but in some cases the errors were as high as 6 percent. Details will be found in
(Werner, 2001).
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Buffers of Size One It is possible that the original loop may contain a buffer of size one. Depending
on the population of the loop and the size of the buffers, the transformation may also create a buffer of
size one. However, the two-machine line model we use does not allow buffers to have size one. Therefore,
we replaced all buffers of size one with buffers of size two. While this approach is somewhat arbitrary, it
results in a better approximation of average throughput and has only a negligible impact on average buffer
levels.

Convergence Reliability In all cases studied, the decomposition algorithm converged. The conver-
gence criterion was that the difference in all E(i)s between successive iterations be less than 107%. The
decomposition algorithm does not exactly satisfy conservation of flow even though Tolio’s equations imply
that it should. However, the differences between the throughputs of the building blocks are generally very
small.

Speed Since the algorithm is nearly identical to Tolio’s transfer line decomposition algorithm, the com-
puting speed will be comparable.

6 Observations on Loop Behavior

6.1 Transfer Line Flatness

This special type of flatness occurs in loops where the capacity of the largest buffer is greater than the sum
of the capacities of the other buffers. For all population levels N? such that Ntotel — Nmaz o NP < Nmaz,
the throughput is constant.

To illustrate the concept of transfer line flatness, we consider a three-machine loop with buffers of size
10, 5, and 22 (see Figure 3). When there are 16 parts in the system, it is possible for buffers B; and B; to
be both full and empty. However, B3 can never become full or empty. This means that machine M; can
never be starved and M3 can never be blocked. If we ignore B3, the system has the same production rate
and average buffer levels as a transfer line consisting of My, By, My, By, and M3. This behavior remains
the same for populations up to 21 because in each of these cases M; is never starved and Mj is never
blocked. In this population range, the average throughput remains constant (Figure 4).
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Machine | 1 2 3 4 Buffer 1 5 3 1

r|— |.1 1 1 - ‘Population‘15‘
p| .01 .01].01].01 Size |10 10|10 | 10

Table 1: Parameters of four-machine loop
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Figure 6: Average buffer levels

6.2 Near Flatness and Non-Flatness

We also observed a type of flatness we call near flatness. It occurs in loops that do not meet the requirements
for transfer line flatness, but have population ranges where the throughput is nearly constant. In the cases
we studied, loops which were very asymmetrical did exhibit near flatness. Symmetrical loops, in which the
machines are identical and the buffer capacities are the same, did not seem to exhibit near flatness. The
degree of flatness seemed to increase with the degree of asymmetry in the loop.

6.3 Balance and Imbalance

Figure 5 shows a four-machine loop whose parameters are listed in Table 1. All parameters are fixed except
r1, the repair probability of M;. In the following, we examine the effect of varying r; on the production
rate and the distribution of inventory. When r; is small, M; is the bottleneck of the system. Figure 6
shows how the average buffer levels vary with r1. The four curves intersect when 1 = .1 because the line
is completely symmetric.

When 1 — 0, by — 10, b3 — 5, by — 0, and b; — 0. This is because M; completely blocks the system.
All the inventory accumulates upstream of M;. Since there is only room for 10 parts in By, the rest of the
inventory appears in Bs, and there is none elsewhere.
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7 Conclusions and Future Work

The purpose of this paper was to summarize (Maggio, 2000) and (Maggio et al., 2000) and to describe a
transformation that makes this work practical for larger systems.
There are several opportunities for future research:

1. Reduce discrepancies in conservation of flow.

2. Extend to very small and very large populations.
3. Reduce errors in average buffer levels.

4. Extend to multiple loop systems.

5. Extend to multiple part type loops.

6. Extend to multiple loop systems with multiple part types.
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