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Abstract: 

The interrelations between production and maintenance are mostly neglected during the design phase of automated production systems. Thus, the relevant performance meas​ures of a planned production system like production rate, throughput time, work in process etc. are often estimated inaccurately. The paper presents an analytical ap​proach for performance evaluation of an automated flow line system (AFLS) which takes into account the dependency between the production and the repair system. The suggested model and solution approach is particularly helpful in the initial design phase as well as during a redesign process in order to evaluate alternative configura​tions of the planned production and repair system.
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1. Introduction

An automated flow line system (AFLS) is a production system in which a series of ma​chining stations, such as milling, drilling, and turning machines, or assembly stations are interconnected along a line or around a circle. The workpieces are predominantly  mounted on specialized pallets. Then they are automatically transferred from one work​station to the next. After finishing the work process pallets and workpieces are divorced and the pallets are transferred back to the setup station. Human operators and sometimes inspection stations may also be incorporated along the line (s. Figure 1). In automated flow line systems the impact of machine breakdown and subsequent repair has a domi​nant effect on the performance of these kind of systems. Thus, a dedicated repair crew usually exists at the line to clear station jams or machine failures. One im​portant design question of those production systems is how to specify the necessary re​pair crew. The objective is to repair a machine failure or to clear a station jam immedi​ately after its occurrence, without having the repair system acting as a bottleneck on the performance of the whole system. 
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Figure AFLS1: Flow line system with automated and manual stations and a dedicated repair crew

The described problem is known in the literature as the machine-repairman or machine interference problem (Stecke/Aronson 1985). Queueing theory is often used to solve this problem (Gross/Harris 1985 and Buzacott/Shanthikumar 1993, Chapter 2). The queue​ing models, however, assume that information, e.g. about machine breakdown time or the time to the next request for operator service is known. When the machines or auto​matic assembly stations are part of a production network, then these times have to be calculated from other system parameters. For example, in an AFLS, for a particular sta​tion, the mean time between machine failure and the probability that an automatic as​sem​bly stations is jammed at any give moment are functions of the production rate of the system.

The production rate of an AFLS can be obtained by several specialized algorithms (see the monographs of Papadopolous/Heavey/Browne 1993, Buzacott/Shanthikumar 1993 and Gershwin 1994 for example). The fact that the system´s production rate depends on the waiting time for the repair crew complicates the solution procedure. Hence, the problem at hand calls for a simultaneous solution to the machine-repairman problem and the problem of finding the production rate in an AFLS. In other words, a simulta​neous solution to two interdependent queueing models is needed be​cause the solution of one model depends on that of the other.

Only a few models for performance evaluation of automated production or flow line systems consider the impact of a limited repair crew. If this is the case the authors con​sider mainly two-station systems (Dudick 1979, Elsayed/Turley 1980, Savsar/Biles 1984, Li 1987, Biles/Usher 1997). Kamath and Sanders (1991) describe an analytic modeling approach for performance evaluation of an asynchronous automatic assembly system with a closed-loop structure and several stations. However, previous research neglects important design parameters involved in automatic flow line systems, e.g. more than two-stations per line, finite buffers or limited repair personnel. The analytical model pre​sented in this paper, however, considers the influence of all these design variables on system´s performance. The procedure may be helpful for analyzing the effects of the fi​nite storage space and the limited number of available repairmen or operators on the performance of an AFLS.

2. Model of the production and repair system

The underlying assumptions of the considered model are the following:

a) The flow line system consist of K stations.

b) The processing times at the stations are variable and assumed to be exponentially distributed with known mean, 1/µk, k=1,2,...,K.

c)
All workpieces produced are assumed to be perfect. Thus, no inspection procedure, no rework, and no rejects are considered.

d)
The time to failure of station k is assumed to be exponentially distributed with known mean, 1/k, k=1,2,...,K. 

e)
A station may fail only when processing a workpiece. Thus, operation dependent failures are assumed.

f)
No parts are scrapped, that is, if a station fails while processing a part, the part re​mains at the station until repairing the station will be compled. After this the work​piece processing is continued.

g)  The times to repair the stations are assumed to be exponentially dis​tributed with known and identical means 1/k=1/, k=1,2,...,K. 

h)  Waiting times for a repairman are not included in the repair times.

i)  The number of repair personnel is limited to c persons. 

j)  The failed stations are served in FCFS order. 

k)  In between station k and k+1 exists a finite intermediate buffer with Zk, k=1,2,...,K-1 places for workpieces.

l)
A station is blocked if its downstream buffer is full. Thus, the blocking model “blocking after service” is considered. 

m)
An inexhaustible supply of unprocessed workpieces is available upstream the first station in the line. Thus, the first station is never starved.

n)
An unlimited storage area exists downstream of the last station in the line. Thus, the last station is never blocked.

o)
The time for transporting the workpieces between the stations is negligibly small compared with to processing times at the stations. Thus, transportation times are not considered. 

The performance measures of the described automated flow line model can be deter​mined by the help of two coupled queueing systems, one queueing system consisting of (K-1) single-stage queueing systems with finite storage and failure prone servers which are arranged in-line, and one queueing system with finite customer population repre​senting the repair process. Analyzing these queueing systems is rather complex, because the flow of customers through the systems depends of that of the other. 

3. Iterative solution procedure
One way to analyze the described queueing network model is to decompose the total model in two independent queueing systems. One system for modeling the automatic flow line system with limited buffers and one for modeling the interference problem. Having analyzed each queueing model separately the results, for example, of the inter​fer​ence model are used to modify the input parameters of the flow line model. On the other hand, the results of the flow line model are used to modify the input parameters of the interference model. This is being done iteratively until a convergence criterion is met (s. Kuhn 1999). A major drawback of this approach is, that the achieved results are some​times not very accurate, especially if the buffer areas are small or if the repair system acts as a bottleneck of the total system (s. Kuhn 1998).

4. Integrative solution approach

An alternative to the described approach of iterative parameter adjustment is to integrate the repair system into the decomposition approach for analyzing the flow line system. This approach is named ”integrative solution approach”. This solution approach con​siders the repair system explicitly during the evaluation process of the flow line system. 

4.1 Decomposition of the production and repair system
The decomposition procedure decomposes the original K-station flow line system into (K-1) subsystems. Each subsystem consists of two production stations with its interme​diate buffer and one repair station. Let us consider the 4-station line shown in Figure 2 which has been decomposed into 3 subsystems. The upstream station of subsystem L(2), Mu(2), for example, models the behavior of all stations upstream of the intermediate buffer between station 2 and 3. The downstream station models the behavior of all sta​tions downstream of the considered buffer. Station I(2) represents the failure and repair process of station Mu(2) and Md(2) as well as all other stations of the flow line system.

4.2 Analyzing the subsystems
The subsystems are modeled as a continuous time Markov process with discrete states. Thus, the subsystems can be analyzed by the help of standard procedures and exact ana​lytical results can be achieved. The components of the subsystems are defined as fol​lows: The stations Mu(k) and Md(k) are defined by their mean service [u(k), d(k)] and failure rates [u(k), d(k)]. Station I(k), however, is defined by the mean repair rates [u(k), d(k)] and the mean waiting rates [u(k), d(k)] considering the fact that all re​pairmen may be busy repairing other stations of the systems when a machine failure of one of the subsystem stations occurs. The decomposition methods seeks to determine the parameters of each subsystem so that the behavior of the material flow in the buffer closely matches that of the flow in the equivalent buffer of the original K-station flow line. This procedure is very similar to the decomposition approach suggested by Gershwin (1987, 1989, and 1994) for analyzing transfer lines.
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Figure DEKOM2: Decomposition of a four-station line with a repair crew into three two-sta​tion lines each having its own repair system

4.3 Determining the parameters of the subsystems

The parameters of the subsystems can be determined by the help of six sets of equations. During a forward and backward procedure these equations are used to evaluate the pa​rameters of the subsystems.

Conservation of flow condition. Because there is no mechanism for creating or de​stroying of workpieces in the line the conservation of flow condition holds for the con​sidered model. Thus, the mean production rates of the decomposed two-station lines are all equal and are also equal to the mean production rate of the original line:

X=Xk=XK=X(k)=Xu(k)=Xd(k)
k=1,2,...,K-1

Flow-rate-idle time relationship. The conservation of flow [Xk=Xu(k)=Xd(k)] and the flow rate-idle time relationship yield in the second set of equations:


[image: image3.wmf](

)

(

)

1

1

1

1

1

1

e

X

e

k

k

e

k

k

k

k

k

d

d

u

u

×

+

=

-

×

-

+

×

m

m

m

(

)

(

)


k=2,3,...,K-1

Interruption of flow. The transition rate for changing the upstream station of subsys​tem L(k), Mu(k), from state “up” to state “starved” is given as follows:
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k=2,3,...,K-1
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pur0(k-1)
:
probability that upstream station of subsystem L(k-1), Mu(k-1), is in state “in repair” and the buffer B(k-1) is empty

pus0(k-1)
:
probability that upstream station of subsystem L(k-1), Mu(k-1), is in state “starved” and the buffer B(k-1) is empty

u(k-1)
:
repair rate of the upstream station of subsystem L(k-1), Mu(k-1)

su(k-1)
:
rate for the resumption of flow (end of starving) at the upstream station of subsystem L(k-1), Mu(k-1)

Eu(k)
:
probability that upstream station of subsystem L(k), Mu(k), is up and buffer B(k) is not full

Another set of equations describe the transition rates for changing the downstream sta​tion of subsystem L(k), Md(k), from state “up” to state “blocked”:




k=1,2,...,K-2
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pdrN(k+1)
:
probability that downstream station of subsystem L(k+1), Md(k+1), is in state “in repair” and the buffer B(k+1) is full

pdbN(k+1)
:
probability that downstream station of subsystem L(k+1), Md(k+1), is in state “blocked” and the buffer B(k+1) is full

d(k+1)
:
repair rate of the downstream station of subsystem L(k+1), Md(k+1)

bd(k-1)
:
rate for the resumption of flow (end of blocking) at the downstream sta​tion of subsystem L(k+1), Mu(k+1)

Ed(k)
:
probability that downstream station of subsystem L(k), Mu(k), is up and buffer B(k) is not empty

Resumption of flow. The next two sets of equations define the transition rates for the stations of subsystem L(k) going from state “starved” or “blocked” back to state “up”. Thus, the material flow will be resumed:
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k=2,3,...,K-1
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pur0(k-1)
:
probability that upstream station of subsystem L(k-1), Mu(k-1), is in state “in repair” and the buffer B(k-1) is empty

pus0(k-1)
:
probability that upstream station of subsystem L(k-1), Mu(k-1), is in state “starved” and the buffer B(k-1) is empty

puw0(k-1)
:
probability that upstream station of subsystem L(k-1), Mu(k-1), is in state “waiting” and the buffer B(k-1) is empty

u(k-1)
:
repair rate of the upstream station of subsystem L(k-1), Mu(k-1)

su(k-1)
:
rate for the resumption of flow (end of starving) at the upstream station of subsystem L(k-1), Mu(k-1)

wu(k-1)
:
repair rate of upstream station of subsystem L(k-1), Mu(k-1), given that the station are still waiting for the repairman


[image: image9.wmf]b

b

b

b

b

k

p

k

b

k

p

k

k

p

k

w

k

p

k

p

k

p

k

d

dbN

d

drN

d

dw

d

dbN

drN

dwN

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

=

+

×

+

+

+

×

+

+

+

×

+

+

+

+

+

+

1

1

1

1

1

1

1

1

1

0


k=1,2,...,K-2

and 
[image: image10.wmf]b

b

K

d

(

)

-

=

1

1


pdrN(k+1)
:
probability that downstream station of subsystem L(k+1), Md(k+1), is in state “in repair” and the buffer B(k+1) is full

pdbN(k+1)
:
probability that downstream station of subsystem L(k+1), Md(k+1), is in state “blocked” and the buffer B(k+1) is full

pdwN(k+1)
:
probability that downstream station of subsystem L(k+1), Md(k+1), is in state “waiting” and the buffer B(k+1) is full

d(k+1)
:
repair rate of the downstream station of subsystem L(k+1), Md(k+1)

bd(k-1)
:
rate for the resumption of flow (end of blocking) at the downstream sta​tion of subsystem L(k+1), Mu(k+1)

wd(k+1)
:
repair rate of downstream station of subsystem L(k+1), Md(k+1), given that the station is still waiting for the repairman

With the help of the described six sets of equations the parameters u(k), su(k), su(k), d(k), bd(k) and bd(k) of subsystem L(k), k=1,2,...,K-1, can be determined using a forward and backward procedure.

4.4 Determining the mean waiting times for the repairman 
Two important parameters of each subsystem L(k) are the mean waiting times of the upstream and downstream station, 1/u(k) and 1/d(k) respectively, considering the fact that all repairmen may be busy repairing other stations of the system when a ma​chine failure of one of the subsystem stations occurs. The mean waiting times 1/u(k) and 1/d(k) can be determined by the help of a machine interference model. Note that the mean waiting time of the upstream station of subsystem L(k), Mu(k), are determined by excluding station (k+1) from the machine interference model and vice versa. This is done because the failure and repair processes of station (k+1) as well as of station k are considered explicitly during the evaluation process of subsystem L(k). In addition, the mean waiting times are determined at failure instant of the considered sta​tion.

5. Results
To demonstrate the approximation quality of the suggested integrative solution approach we consider two examples of automatic flow line systems (AFLS) with lim​ited buffers. The AFLS consist of ten identical stations. The mean processing times, the mean times to failure, and the mean times to repair are assumed as follows: 1/µk=1.0, 1/k=10.0, and 1/k=0.1 (example 1), 1/k=1.5 (example 2), k=1,2,...,K. One repairman is available for repairing the failed stations of the AFLS. The number of buffer places in front of each sta​tion of the AFLS are varied between 1 and 19 places for each example. 
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Figure BSP13: Production rate of the AFLS and utilization of the repair system (example 1)

Figure 3 shows the production rates of the AFLS and the utilization of the repair system (example 1) received by a simulation experiment and by the help of three different ana​lytical solution procedures. The analytical solution procedures are: the suggested inte​grative approach, the iterative approach and a approach, where the dependency of the production and repair system is fully ignored. This approach is named “independent ap​proach”. The production rates approximated by the analytical approaches are almost equal and the deviation to the simulation results are very small. The achieved results, however, are induced by the relative short mean waiting times for the repairman because the repair system in is very low utilized. The utilization of the repair system is shown in the right chart of Figure 3. The chart, however, shows also that the independent ap​proach neglects the utilization of the AFLS, which is strongly influenced by the number of buffer places between the stations. Because operation dependent failures are assumed, the num​ber of station failures increases with higher station utilization. Thus, the utili​zation of the repair system increases, if the buffer areas of the flow line system are en​larged. The inde​pendent approach neglects this phenomenon. The integrative and the iterative approach, however, lead to very similar and exact results.

Different results are achieved if the utilization of the repair system is above 50 %. In example 2 the mean time to repair for a failed station is enlarged to 1.5 time units. Fig​ure 4 shows the results for the production rate and the utilization of the repairman achieved by the different solution approaches.





Figure BSP2TH4: Production rate of the AFLS and utilization of  the repair system (example 2)

The independent approach overestimates the production rate, because the independent approach neglects the waiting times for the repairman. The approximation error in​creases with increasing buffer areas. Because the production rate of the AFLS increases with larger buffers, the waiting times for the repairman increase too. 

The iterative approach, on the other hand, underestimates the production rates, because the failure probabilities of the stations of the AFLS are overestimated. The dependency of neighboring stations leads to a drop of the stations failure rates. The integrative ap​proach, however, leads to nearly exact results.
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