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We present a Tabu Search scheme for the solution of the NP-hard part of the manufacturing cells design, on a simplified yet concise model which adequately fits to practice. The design can then be finalised using simple methods to incorporate additional parameters. This scheme integrates in a systematic way proper short and long-term memory structures and an overall search strategy for their use. At the code development stage, special care was taken to enhance the explorative capability of the algorithm by correlating hash function output with parameters ranging. The resulting algorithm is robust and produces more than promising results for problems with up to 30 machines, with negligible computational effort.  In the absence of known optimal solutions for larger dimensions and therefore of a testing benchmark, we note that there is much room for fine-tuning, if needed, by making dynamic some of the static parameters in the search strategy.
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1. Introduction

The design of manufacturing cells is a central issue in the area of Group Technology. The target is to decentralise production by first grouping the machines into clusters and the various part types into part families, and then allocate the processing of each part family to a machine cluster. The benefits from such an arrangement include the reduction of transport, queuing and processing times, the elimination of the need for frequent set-ups and tool changes in the machines, the reduction of inventories and the simplification of the production plan. These benefits lead naturally to better delivery times, quality improvements, more efficient management and customer satisfaction. The application of cellular manufacturing is also an appropriate first step towards a JIT production scheme. 

In practice, the creation of completely autonomous manufacturing cells is very seldom feasible [Wemmerlov and Hyer, 1989] and the aim becomes to decrease as much as possible the between-cells traffic i.e. the traffic generated by some parts which visit machines in different clusters. Optimisation methods address the NP-hard part of the design, that is the grouping of machines into clusters. The parts grouping is an almost trivial task, based on locating part similarities.

The manufacturing systems Cell (or Cluster) Formation Problem (CFP) addresses this problem of creating cells with minimum interactions. The formulation examined in this paper was first presented in [Sofianopoulou, 1994] and takes into account the most important parameters, namely the sequencing order of the part families in the routing through the various machines, the associated «distances» between the various machines, and the maximum allowed size for the cells. The importance of considering the sequencing order of the parts in the routing, a somewhat neglected factor, is discussed in [Harhalakis, Nagi and Proth, 1990]. The upper limit on the number of machines in each cell is appropriately imposed to face practical restrictions, arising for example from location or available space limitations. This formulation combines simplicity and adequate fit to realistic situations for a preliminary design.

This is in line with the staged approach suggested by [Burbidge,1993] for clustering problems in Group Technology. The second stage of the design would then be to modify the solution found to fit even more to practical situations, by incorporating other parameters such as the machine duplication and/or part subcontracting costs and the possibilities for changes in the parts routings. This can be achieved easily with very simple methods such as the ones suggested by [Kern and Wei, 1991] and [Seifoddini, 1989]. 

Most of the existing algorithms for CFP are based on clustering methods and carry the weaknesses of the statistical clustering theory with the plethora of different criteria and the inherent inability to find guaranteed good solutions. Exact algorithms have also been proposed, mostly based on mathematical programming approaches, but these do not follow this staged approach and are therefore very hard to solve due to the large number of variables involved and the difficulty of obtaining tight bounds. In general, existing algorithms for the CFP either oversimplify the problem or cannot deal with instances of practical size using reasonable computing resources. A brief description and evaluation of methods proposed for the cell formation problem is given in Cheng (1992), Kandiller (1994), Sofianopoulou (1997) and Cheng, Goh and Lee (1996), among others. A recently proposed branch and bound method in [Spiliopoulos and Sofianopoulou, 1998] was proved capable of dealing with medium-sized instances with over 20 machines, but more is needed to tackle realistic situations.

In this work, we turn our attention to the most successful Tabu Search (TS) paradigm. TS is a meta-heuristic and as such, open to strategic adaptation of the master ideas. We present a proper framework for the short and long-term memory structures and for the overall search strategy, so as to reach the benefits of intelligent search, namely adaptive memory and responsive exploration. At the development stage, special care was taken to enhance the explorative capability of the algorithm by correlating hash function information with the values of the various parameters. This way, we designed a robust code which produced most promising results with negligible computational effort. The only other TS application in the area that we are aware of is the one in [Skorin-Kapov and Vakharia, 1993] which has quite a different focus, namely the scheduling of jobs within a single manufacturing cell under varying parameter conditions. In the approach we are proposing, we take the jobs as granted, proceed to the initial design of the manufacturing cells and then examine potential changes in the part families routings together with other parameters in a second stage, as already mentioned.   

The problem statement is presented in section 2, including the IP formulation and the method for the calculation of machines "distances" published in [Sofianopoulou, 1997]. Section 3 presents some necessary definitions and the basic elements of the TS framework proposed, namely the short and long-term memory structures and aspects. Section 4 integrates these basic elements into a general strategy and outlines the search course. Computational results and conclusions are given in sections 5 and 6, respectively.

2. Problem Statement

CFP can be described in graph-theoretic terms, if we consider the machines as vertices of a weighted graph where the edge weights represent the cost of parts traffic between the machines. The following problem statement describes in a compact form our objective, that is the formation of cells of bounded size, with minimum interactions:

Problem CFP: “Given a graph G = (V,E), where V is the set of n nodes and E the set of edges, and weights Wi, i=1,...,|E| on the edges, partition V into disjoint subsets of maximum size M, so as to minimise the total weight of edges connecting nodes in different subsets”.

CFP is known to be NP-hard, see [Garey and Johnson, 1979].

The following 0-1 IP formulation for the manufacturing systems Cell Formation Problem is given in [Sofianopoulou, 1997]:
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We say that two machines are “connected” if they belong to the same cell. Then, constraint (2.2) ensures that machine k is connected with at most M-1 other machines, and constraints (2.3), the “triangle” constraints, ensure that within each cell, all machines are connected to each other.

In the following, we refer to parts for reasons of simplicity, whereas the intended meaning is that of part families, as explained in the introduction.

The cost elements are calculated from data on the traffic of P parts between the n machines. Given a Pxn part-machine incidence matrix A=(api) p=1,...,P,  i=1,...,n which describes the sequence of machine operations on each part: 
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Thus, δijp shows whether part p visits machines i,j in two successive steps or not, and cij collects the contributions from all parts, to represent the traffic between machines i and j. The part-machine incidence matrix used above is not the one commonly seen in the literature where the important factor of sequencing order of the parts in part routings is largely neglected. 
The modifications for the case of parts being processed more than once in some machine are easy. The part-machine incidence matrix becomes multi-valued, i.e. each element api p=1,...,P,  i=1,...,n is taken to mean a set which includes the steps at which part p visits machine i. Equation (2.7) is accordingly adjusted to consider all pairs of values, one from set api and the other from apj.

3. Definitions - the Basic Elements of the Tabu Search Framework
3.1 The Shape of Solutions
The shape of a solution, that is of an allocation of machines into cells, is the number of cells and their sizes. For example, the shape {4,5,5,6} is one of the feasible ones for problems with n=20 machines and M=6 maximum cell size. During the search, infeasible shapes are also encountered, that violate the implicit constraint "in an optimal solution, no two cells can be merged". Extensive experimentation has led to the conclusion that the most possible shape of the optimal solution is the one with the maximum number of cells of the maximum allowed size M, e.g. the {2,6,6,6) one in the previous example. This is not guaranteed though, there are counter-examples.

3.2 Definition of Moves
Each solution visited during the search has an associated neighborhood. The basic operation to reach one of the neighboring solutions is called a move. The two types of moves used in the proposed algorithm are:

· simple move of a machine from one cell to another

· swap of two machines which are allocated to different cells

The simple move changes the shape of the solution, a highly desirable feature because the search can potentially lead to any point in the feasible space. In fact, simple moves can temporarily guide the search out of the feasibility boundary, to an infeasible shape, therefore serving the overall diversification strategy of the method. This happens because an infeasible shape is quite inferior, is met for very "local" reasons and cannot be preserved for long. When such a shape is met, the search automatically returns to the feasible area in a few iterations. We note here that diversification is the general TS target of guiding the search towards unexplored areas of the solution space. "Oscillation" between feasible and infeasible areas greatly enhances the chances of achieving this goal, and in fact much research is devoted to exploiting almost only this idea, see for example [Glover and Laguna, 1997]. 

3.3 Short-Term Memory: Tabu Moves
The short-term memory employed is the history of recent moves (recency memory) and aims mainly at avoiding cycling by imposing restrictions on candidate moves. To this end, we use a symmetric matrix tabu(i,j) i,j=1,...,n, initially with all elements zeros. In the case of a simple move of machine i from cell c1 to cell c2, a constant positive value (the tabu tenure) is given to all (k,i) and (i,k) elements, where the index k runs over all the machines remaining in cell c1. At the same time, the non-zero values in all the other elements are reduced by one. 

The standard approach for the application of this short-term memory in simple moves would be to prohibit a simple move of a machine i into cell c whenever all new connections involved have positive values in this matrix, that is tabu(i,j)>0 for each machine j in cell c. However, this is both quite restrictive and also leads to frequent returns to solutions already visited. The latter results to re-appearance of whole solutions sequences. An example would be to permit a simple move which involves new connections that have all tabu values close to the maximum allowed except from one which is zero, that is a simple move almost equivalent to the reversal of a recently made one. This leads quickly to the return to a previous solution. 

For this reason, this classical logical condition for the characterization of a simple move as tabu is complemented disjunctively:
or: the mean value of the non-zero elements is greater than a predefined lower limit (which is in fact half of the tabu tenure)
Analogous rules are applied in the case of swaps. A swap is considered tabu if either all new connections involved have positive values in the tabu matrix or the mean value of the non-zero elements is greater than the lower threshold. 
3.4 Short-Term Memory: Aspiration Criteria
There are cases when it is desirable to allow tabu moves to be candidates, an obvious example being the case of a move which improves the best value found so far. Such cases are located on the basis of logical conditions which, using the standard TS terminology, are called aspiration criteria. We emphasize that in the present algorithm, this procedure locates candidate moves only, i.e. not necessarily selected. The final selection depends on the general strategy which is outlined in section 4.

The typical and customarily used approach is the global form of aspiration by objective where the tabu status of a move is overridden when the move improves the best value found so far. For the class of problems examined this criterion is not sufficient, hence we improve on it, by monitoring the best intermediate value recorded in the sequence between two global improvements. With the exception of earlier stages in the search, this sequence can be very lengthy. To avoid extreme deterioration within this sequence (from which a deep "drop" to a global improvement would be difficult), we also consider as candidate moves ones that improve on this intermediate value. Again using standard TS terminology, this rule can be considered a variation of aspiration by objective/ regional form.
The second criterion is the standard aspiration by search direction (one-way), where the tabu status is overridden if the move improves the current solution and all connections that characterize this move as tabu received their tabu status similarly during a locally improving iteration. 

The third criterion serves the aspiration by influence target. The notion of influence is related to the introduction of some perturbation in the search, to uncover solutions which are structurally different from those that would be visited normally. Influential moves are also carried out as part of the long-term memory application (see section 3.5) but we prefer to enhance this element by introducing it also in the aspiration process.

To this end, we define as strong machines those that have the largest total connection cost to all the others, therefore bearing more influence when moved, and in particular the top n/4 machines.

The logical condition for the application of this criterion is then: the tabu move is locally improving, the machine involved in a simple move is a strong one (in the case of swaps at least one machine is strong), there is a certain delay from the last global improvement and the mean value of the non-zero elements in the tabu matrix is lower or equal to an upper threshold (which is in fact again half of the tabu tenure, as the threshold used to characterize a move as tabu).

3.5 Long -Term Memory
The long-term memory introduces the following strategic elements that complement each other:

· diversification of the search i.e. guidance towards unexplored areas of the solution space

· intensification of the search, that is, focusing to "good" and/or promising areas, through the introduction of attributes of already visited "elite" solutions and also through the selection of influential moves.

The first long-term memory used is a residence frequency one, based on the whole history of the search. In the standard TS terminology, residence frequencies count the times a variable "resides" in some value, in contrast to the transition frequencies which keep the number of changes in the values of variables. This long-term memory serves both the above strategic elements (apart from the introduction of attributes of "elite" solutions). Diversification is naturally achieved and intensification is based on the use of "strong" (therefore influential) connections, as it is explained below, in analogy with the notion of strong machines. 

To this end, we keep a symmetric matrix S(i,j) i,j=1,...,n initially with all elements zeros. At the end of each iteration, for every pair of machines (i,j) that belong to the same cell, the corresponding element in S is increased by one. We scale down the values of this matrix to keep its values comparable to those in the cost matrix C. Therefore, at every stage of the search, values in S that are significantly smaller than their counterparts in C indicate connections which are expected to appear more frequently (being the more influential ones) but this has not happened, that is these connections have not been explored much.

Therefore, we are interested in the values of the C-S matrix. If we select a move on the basis of this matrix instead of the normal cost one, we give more weight to large cost - low frequency connections and less weight to small cost - high frequency ones. As a result, moves that lead to such connections are given priority/ are discouraged, respectively. This practice is in accordance with the use of long-term memory to provide incentives and penalties during the search and in fact the C-S matrix contains exactly the incentives/ penalties factors needed. Accordingly, this use of residence frequency-based long-term memory serves both the intensification and diversification targets, the first one through consideration of influential connections. 
The second long-term memory is the one based on selected good ones, the "elite" solutions already being registered, and therefore completes the intensification target aspects.

To this end, we keep a symmetric matrix B, initially with all elements zeros. After each iteration, if the current solution fulfills certain criteria, for every pair of machines (i,j) that belong to the same cell, the corresponding element in B is increased by one. Again this matrix is always scaled-down to have values comparable to the cost matrix ones. 

A solution is taken into account for the update of matrix B if both the following conditions hold:

· the solution is a TS local optimum (not necessarily a strict local optimum, since the search is restricted by short-term memory)
· the corresponding value does not exceed a predetermined upper bound calculated as: heuristic value x 1.05. In other words, only good TS local optima are recorded
The heuristic used is the merge-and-swap one presented in [Spiliopoulos and Sofianopoulou, 1998]. Note that we allow the same solution to be recorded again if it re-appears. If the search insists on some areas, this must be taken into account.
If we select a move on the basis of the B matrix, selection is based on attributes (connections) of high quality solutions already found. The introduction of such attributes help towards focusing the search in good or high promising areas, therefore serving the intensification purpose. 
An important detail is that not all values of the B matrix are used in this process. We are mainly interested in connections which systematically appear in many elite solutions, and impose this by filtering out values less than 0.8 of the maximum frequency observed so far. This is a good value found in practice. Smaller values would allow poor TS local optima that were visited only few times to contribute. On the other hand, a value of 1.0 would degenerate the process to be based on very few elite connections, especially during the later stages of the search, because of the search differentiation.

4. The Search Strategy
4.1 Normal and Scheduled Iterations
The application of the long-term memory is based on a schedule. Certain conditions (explained later) trigger the following iterations sequence:

· at most 10 iterations mainly for differentiation purposes, during which the move selection is based on the residence frequency-based long term memory, that is on the values of the C-S matrix. During these iterations all short-term memory restrictions (the tabu ones) are ignored. The iterations are stopped when the corresponding value can no more be improved, that is all candidate moves which involve high-cost connections have been visited enough and no further differentiation can be achieved. This practice also prevents cycling in the absence of tabu states use
· 10 iterations during which short-term recency memory is applicable, together with aspiration criteria. 

· at most 10 iterations for intensification purposes, during which the move selection is based on the second long-term memory of elite solutions, that is on the values of the B matrix. Again during these iterations all short-term memory restrictions are ignored. In an analogous way with the differentiation phase, these iterations are stopped when the corresponding value can no more be improved, that is candidate moves do not contain enough "good" connections and intensification is no more served. This also prevents cycling in the absence of tabu states use. This last stage is not applied at all when the number of elite solutions has not reached a certain minimum, for reasons of reliability of the statistical information collected. This may happen in the earlier stages of the search for certain problems, depending on the quality of the heuristic solution and the search course. In such cases, the application of this stage is postponed and the threshold for a solution to enter the elite set is increased. 
The logic for the above is the following: After a certain number of iterations has passed and if there is significant delay in global improvement, we first perturb the search to guide it towards unexplored areas, then impose a stabilization phase and finally introduce attributes of high quality solutions found to correctly intensify the search in the new areas. This sequence is not repeated continuously of course. Technically, the global improvement delay counter is also re-initialized at the end of each such sequence.

The iterations above are the scheduled ones. Any other, including the one triggering this sequence is called a normal iteration.
4.2 Outline of the Search Course
The algorithm starts with the most probably optimal shape, that is the one with the maximum number of cells of the maximum size M. The machines are randomly allocated to cells. 

We then proceed with 500 iterations, starting with normal (i.e. not scheduled) ones. During the normal iterations, the cases are:

· the best simple move leads to a solution at least equal to the one of the preceding iteration: this simple move is selected. 

· there are no candidate simple moves (all cells are saturated, that is they all have the maximum allowed number of machines M, or all simple moves are tabu and aspiration criteria are not applicable) and the best swap leads to a solution at least equal to the one of the preceding iteration: this swap is selected (in general, in the case of not available swaps, all tabu states are reduced until one is found)
· the best simple move leads to a solution inferior to the one of the preceding iteration while the best swap leads to a solution at least equal to the one of the preceding iteration: this swap is selected
· both the best simple move and the best swap lead to solutions inferior to the one of the last iteration: the best simple move becomes the candidate move (for reasons of differentiation) but not yet carried out. We wait to check whether this iteration triggers the scheduled moves sequence.
The scheduled moves sequence is triggered in this last case if the search has reached the 100th iteration and global improvement or last application of the scheduled moves sequence has delayed for 50 iterations. Scheduled moves are always simple moves for reasons of differentiation, unless all cells are saturated. At the end of the scheduled iterations the search returns to normal ones. 

5. Computational Results

We implemented a Fortran 77 code to test these ideas on a series of problems with known optimal solutions. At the development stage, special care was taken to avoid occasional re-visiting of past solutions (that is, apart from cycling avoidance), especially for the non "elite" ones . We monitored the occurrence of this effect with the use of a hash function, adjusted the parameters of the search to minimize it and added or deleted features to enhance differentiation. 

The results were more than encouraging, in that the algorithm found the optimal solutions in all, in negligible times (on a Pentium 300 MHz 32MB PC). In fact, for these problems we did not even have to increase the maximum number of iterations which is quite low at the 500 level. In particular, we tested: 

· the set of 80 problems published in [Sofianopoulou, 1997] and found the optimal solution in all. These are based on 10 cost matrices of dimension 16x16, with maximum cell size running over [5,12]. Total time was 140 seconds

· the set of 50 problems published in [Spiliopoulos and Sofianopoulou, 1998] and found the optimal solution in all. These are based on 10 cost matrices of dimension 20x20, with maximum cell size running over [6,10]. Total time was 127 seconds

· a set of 35 problems based on 7 cost matrices of dimension 25x25, with maximum cell size running over [8,12] and found the optimal solution in all. Total time was 148 seconds. The data for these problems is available by the authors and the optimal solutions were found by the algorithm presented in [Spiliopoulos and Sofianopoulou, 1998]

The only reason that did not enable us to test the proposed algorithm with problems of higher dimensionality was the unavailability of known optimal solutions. We did construct a series of 45 problems based on 9 cost matrices of dimension 30x30, with maximum cell size running over [8,12] but could no more use the algorithm presented in [Spiliopoulos and Sofianopoulou, 1998] to find the optimal solutions. The 9 cost matrices were calculated from random parts routing data, combining 3 different probability distributions for the number of machines that each part visits with 3 different number of parts. The data for these problems is also available by the authors.
For reasons of presenting indicative performance at such dimensions, we let the proposed algorithm itself run for 10000 iterations, with random re-starts and zeroing of all tabu states information every 1000 iterations, and compared the results with the ones obtained normally. The normal runs took a total time of 292 seconds on a Pentium 300 MHz 32MB PC and missed only 3 conjectured optimal solutions, giving a mean deviation of 0,05% and a maximum one of 0,08% in these 3 instances. 

6. Conclusions

We presented a Tabu Search approach for the solution of the manufacturing systems Cell Formation Problem. We solve a simplified yet concise model which takes into account the most important factors involved, namely the maximum size of the cells and the sequencing order of the parts in part routings. Other parameters can then be easily taken into account at a subsequent stage. 

The Tabu Search approach consists of a proper framework for the short and long-term memory structures and the overall search strategy, so as to reach the benefits of intelligent search, namely adaptive memory and responsive exploration. To this end, we propose special long-term memory structures and use them in a scheduled way to achieve both the differentiation and intensification Tabu Search targets. We give particular emphasis to influential moves by incorporating them also in the aspiration criteria. Oscillation between feasible and non-feasible areas is also used, to enhance differentiation. As for the sensitivity of the results with regard to the various parameters, the fixed ones have been extensively tested and the non-fixed ones are sufficiently robust. 

The algorithm produced most promising results for problems with up to 30 machines, this limit being imposed only by the absence of a benchmark with known optimal solutions for larger problems. We believe that the algorithm can give good quality solutions, without any changes, for problems up to dimension 50, but this remains to be tested. For higher dimensions, and in the case of deteriorating performance, there is much room for fine-tuning by making some of the static parameters dynamic. There is also the possibility of enhancements with probabilistic features (e.g. from Simulating Annealing) to introduce additional explorative capability, but this is not considered as the proper next step.
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