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Abstract:

In this work, we are interested in base-stock controlled assembly systems. Thus, we consider production systems, realizing an assembly operation between components. In a previous work, we defined precisely how the base-stock mechanism could be applied in the case of assembly systems, then we proposed a queueing network model for base-stock controlled assembly systems and we established some properties for this model. In this paper, we propose an analytical technique for performance evaluation of base-stock controlled assembly systems, based on a decomposition method. This analytical method provides steady-state performance measures, like the probability of immediately satisfying a demand, the average number of backordered demands, the average number of finished products, etc.
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1. introduction

In this work, we are interested in pull controlled production systems, with a make to stock production. Generally such systems are decomposed into stages, each stage consisting of a production subsystem producing semi-finished parts. We consider the special case of base-stock controlled systems. The particularity of these systems is their great reactivity: when an external demand arrives, it is instantaneously transmitted to each stage. These systems have one adjustment parameter per stage, that represents the initial level of finished products for the considered stage. The interest of the base-stock control policy has already been shown in other works, and the analysis of such systems was performed, particularly by developing a decomposition technique, but only in the case of serial stages [4]. On the other hand, in [9], the author analyses production systems, in which individual components are made to stock, using a base-stock policy, but final products are assembled to customer orders. Note that in [9], it is assumed that no operation can be performed after the assembly operation, so the assembled product is the final product. In this paper, we are interested in the analysis of base-stock controlled assembly systems, in which assembly operation can be followed by other operations. Thus, we propose an analytical technique for performance evaluation, based on the decomposition method we mentioned before. This analytical technique provides steady-state performance measures, like the probability of immediately satisfying a demand, the average number of backordered demands, the average number of finished products, etc.

2. base-stock controlled assembly systems

Let us present the principle of base-stock controlled assembly systems, by an example. We consider a production system with 3 machines m1, m2 and m3 (see figure 1). This system produces one type of finished parts, by assembling 2 semi-finished parts that are provided by machines m1 and m2, and then by processing the assembled product on machine m3 to obtain the finished parts. Each of machines m1 and m2 is supplied by one type of raw parts. In our example, this production system is decomposed into 3 stages. Each stage i (i=1,2,3) consists of a single machine and an output buffer Oi. In each machine, a part can be waiting for or receiving service. When a part finishes its processing on machine mi (i=1,2,3), it enters buffer Oi. In the following, it is assumed that raw parts are always available at the inputs of stages 1 and 2. 








Figure 1: Example of an assembly production system

Each buffer Oi (i=1,2,3) contains initially Si finished products of stage i. All the machines are initially empty. 

When an external demand arrives in the system, it simultaneously causes:

(A departure of one finished product from the system, if there is at least one finished part in buffer O3. If buffer O3 is empty, then this external demand is backordered until a finished part is available.

(The instantaneous assembly of one finished part from stage 1 and one finished part from stage 2 (if O1 and O2 are both not empty, otherwise, this demand is backordered and will be satisfied later). The obtained product is then processed in stage 3.

(The starting of a new production in stages 1 and 2.

We can notice, that as in the case of serial stages, the advantage of the base-stock policy, if we compare it with the other pull policies, is its great reactivity. Indeed, when an external demand arrives, it is simultaneously transmitted to all the stages of the system.

3. modeling

The base-stock system described above can be modeled as a queueing network with synchronization mechanisms (see Figure 2). Stations M1, M2 and M3 model the machines m1, m2 and m3 respectively. Queues Pi (i=1,2,3) model the output buffers Oi. Queues A3 and A4 contain the authorizations for transferring semi-finished parts from stages 1 and 2 into stage 3, and finished parts toward the consumer, respectively.










Figure 2: The queueing network model of the production system of Figure 1.

Let us now study the behavior of this system. When an external demand arrives  in the system, it is instantaneously transmitted to all the stages, by supplying A3 and A4, and starting production in stages 1 and 2. The supplying of A4 causes the departure of one entity from P3 (if P3 is not empty) and the supplying of A3 authorizes the simultaneous transfer of one entity from P1 and one entity from P2 ( if P1 and P2 are both not empty), into M3.

We assume that queue A3 has a finite capacity a3, which can be chosen as big as we like. So, when an external demand arrives, it will be taken into account, if the number of customers in queue A3 is less than a3, otherwise this demand is rejected as a whole, i.e. it will not supply queues A3 and A4, and will not start the production in stations M1 and M2. On the other hand, we suppose that all the other queues of the system have an infinite capacity.

In a previous work [8], we have seen that there are several closed sub-networks within the queueing network of Figure 2. The number of customers present in these closed sub-networks is thus constant and equal to the number of customers that are present at the initial state. We defined then the following invariants, corresponding to these sub-networks (the bold characters denote the state of a queue, i.e. the number of customers present in this queue):

Mi + Pi = A3 + Si

i=1,2



(1)

A3 + M3 + P3 = A4 + S3




(2)

Since A3 is bounded by a3, then invariants (1) and invariant (2), allow us to determine the following bounds (i=1,2):

0 ( Mi ( a3 + Si,

0 ( Pi ( a3 + Si


0 ( P3 ( S3


M3 and A4 are not bounded and can theoretically reach infinite values. 

4. analysis 
In our considered system, we are particularly interested in the following steady-state performance measures: the proportion of demands that are immediately satisfied, the proportion of backordered demands, the proportion of rejected demands, the average number of backordered demands, the average number of finished products for each stage and the average work in process for each stage. These performance measures depend on the characterization of each manufacturing process, the characterization of the arrival process of demands, and the number of finished parts present at the initial state, in each stage. 

In this work, we are doing the following assumptions: demands arrive according to a Poisson process with rate ( and the processing times for the manufacturing process i are i.i.d. exponentially distributed variables, with rate (i (i = 1,2,3). Also, we assume that the stability condition is verified, i.e. the average arrival rate of demands is less than the production capacity of the system.

In order to calculate the steady-state performance measures, we use a decomposition method, which is described in [5] for systems composed of serial stages. The idea is to decompose the whole system into several subsystems. Our considered system, denoted by S2, can be decomposed into 2 subsystems (see Figure 3 and Figure 4). The model of Figure 3 (subsystem 1) is exactly the subsystem composed of stages 1 and 2 of our considered system. For the second subsystem (see Figure 4), we can notice that this model includes the whole stage 3 of the system. Furthermore, we must add the modeling of the arrival process of entities in station M3. That is why we introduce a routing at the entry of stage 3, as well as a station DD3 that contains the deferred demands. When a demand arrives in the system, two cases are possible: 

( If there are already waiting demands in DD3, an entity will be put in DD3,  and will be processed after the demands that were already waiting. And when DD3 is not empty, it involves that P1 or P2 (or both) is (are) empty (synchronization station). Invariants (1) for i=1,2 let us deduce that M1 or M2 (or both) is (are) not empty. Thus, the processing time of DD3 depends on the fact that entities in DD3 are waiting for a finished part from stage 1 or for a finished part from stage 2, or both. 

( If DD3 is empty, then we consider the probability that P1 or P2 (or both) is (are) empty ((2 = p(P1 = 0 or P2 = 0 / DD3 = 0)). With probability (2, the entity will enter DD3 in order to wait that at least one finished part from stage 1 and one finished part from stage 2 become available. With probability 1-(2 (there are at least one entity in P1 and one entity in P2), the entity will immediately enter M3.

It is important to notice that the waiting entities in station DD3, represent the waiting demands in queue A3. Thus, station DD3 actually represents queue A3. So, we can determine the probability 1-(2 (and then (2):

1- (2
=
p(P1 ( 0 and P2 ( 0 / DD3 = 0)      =
p(P1 ( 0 and P2 ( 0 / A3 = 0)








Figure 3: Subsystem 1


Figure 4: Subsystem 2

4.1 analysis of stations M1 and M2:
We can define the states of all the queues of subsystem 1 (see Figure 3), by determining the states of stations M1 and M2. Indeed, if we consider invariants (1) for i=1,2 we can distinguish these different cases:

Case 1: If 0 ( M1 ( S1 and 0 ( M2 ( S2


Then we have: A3 = 0, P1 = S1 – M1 and P2 = S2 – M2
Case 2: If 0 ( M1 ( S1 and S2 < M2 ( S2 + a3


Then we have: A3 = M2 – S2, P1 = M2 – S2 + S1 – M1 and P2 = 0

Case 3: If S1 < M1 ( S1 + a3 and 0 ( M2 ( S2 



Then we have: A3 = M1 – S1, P1 = 0 and P2 = M1 – S1 + S2 – M2
Case 4: If S1 < M1 ( S1 + a3 and S2 < M2 ( S2 + a3 and M2–S2  (  M1– S1


Then we have: A3 = M1 – S1, P1 = 0 and P2 = M1 – S1 + S2 – M2
Case 5: If S1 < M1 ( S1 + a3 and S2 < M2 ( S2 + a3 and M1–S1  (  M2–S2


Then we have: A3 = M2 – S2, P1 = M2 – S2 + S1 – M1 and P2 = 0

Therefore, by defining the steady-state probabilities of (M1, M2), we can determine the steady-state probabilities for queues A3, P1 and P2. (M1, M2) is a continuous-time Markov chain with finite state-space {(n1,n2) | 0 ( n1 ( N1 and 0 ( n2 ( N2} where N1 = S1 + a3 and N2 = S2 + a3 . A state transition can only occur if a demand arrives or if one entity in M1 or M2 is released. This Markov chain is represented in Figure 5. Then we build the infinitesimal generator Q1 by ordering the state space of (M1, M2) as follows: {[(0,0),(0,1),…,(0,N2)], [(1,0),(1,1),…,(1, N2)], …, [(N1,0),(N1,1)… (N1,N2)]}.









Thus we obtain:
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Figure 5: Markov chain for (M1, M2)

We denote by B01, B11, A01, A11 and A21 the following square matrices of order N2+1 :
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A11 = B01 - (1I
   and
A21 = (1I , where I is the identity square matrix of order N2+1.

We can notice that Q1 has the same repetitive form as in [9]. Then the resolution of the steady-state equations is similar, using the matrix-geometric solution proposed in [7]. Thus we obtain the steady-state probabilities for the system being in one of the states represented in Figure 5, i.e. p(M1=n1 and M2 = n2, ( n1, n2)

4.2 analysis of station M3
It is easy to see that states of queues P3 and A4 could be determined if states of M3 and A3 are given. Indeed, if we consider invariant (2), and if we notice that (A4,P3) is a synchronization station, we obtain:


If
P3 = 0, then A4 = M3 - S3 + A3

and if
A4 = 0, then P3 = S3 - M3  - A3
We must notice that for the analysis of station M3, we do not consider only subsystem 2, but we have also to take into account stages 1 and 2 of the system. 

Let us define several probabilities which will be used for the construction of the Markov chain corresponding to the state of M3:



( = p(DD3 = 1 / DD3 ( 0)  and 1-( = p(DD3 > 1 / DD3 ( 0)

( = p(P2=1/(DD3(0 and P1=0 and P2(0)) and 1-( = p(P2>1/(DD3(0 and P1=0 and P2(0))

( = p(P1=1/(DD3(0 and P1(0 and P2=0)) and 1-(= p(P1>1/(DD3(0 and P1(0 and P2=0))

a = p(P1=0 and P2>0/ DD3 = 0)

b = p(P1>0 and P2=0/ DD3 = 0)

c = p(P1=0 and P2=0/ DD3 = 0)

and we have
a + b + c = (2

All these probabilities can be calculated by using the results obtained in the analysis of subsystem 1. 

















Figure 6: Markov chain for M3

In order to represent the state of the system, we have chosen the state vector (M3, X), with:




X = x00
if DD3(0 and P1=0 and P2=0




X = x0x
if DD3(0 and P1=0 and P2(0




X = xx0
if DD3(0 and P1(0 and P2=0




X = 0

if DD3 = 0
(( P1, P2)

Then we obtain the Markov chain of Figure 6, and we can deduce the corresponding infinitesimal generator Q2, by ordering the states of the system as follows: 

((0,x00), (0,x0x), (0,xx0), (0,0), (1,x00), (1,x0x), (1,xx0), (1,0), …).
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order 4.
We can notice that Q2 has exactly the same repetitive form as in [4]; however we must notice that the block matrices constituting Q2 are bigger (order 4, instead of order 2 in the case of serial stages). Then the resolution of the steady-state equations is similar, using also the matrix-geometric solution [7]. Then we obtain the steady-state probabilities   for   the   system   being   in   one of the states represented in Figure 6, i.e. 

p(M3 = k and X = (x00 or x0x or xx0 or 0)), with k = 0,1,2, … 

5. performance evaluation
Now, p(M1 = n1, M2 = n2) and p(M3 = n3) are perfectly defined for all values of n1, n2 and n3. Therefore, by considering Cases 1 to 5, we can determine all the probabilities p(M1 = x) ,  p(M2 = x) ,  p(M3 = x),  p(P1 = x) ,  p(P2 = x),  p(P3 = x),  p(A3 = x)  and

p(A4 = x) for all values of x. 

5.1 steady-state probabilities relative to subsystem 1

We do the likely assumption : a3>S1 and a3>S2.

(Steady-state probabilities for M1:






N2
p(M1 = x)
=
(
p(M1 = x, M2 = y)



0 ( x ( N1


y=0
(Steady-state probabilities for M2:








N1
p(M2 = x)
=
(
p(M1 = y, M2 = x)



0 ( x ( N2


y=0
(Steady-state probabilities for A3:

We have
p(A3 = 0)  =   p(0 ( M1 ( S1 and 0 ( M2 ( S2)            (see Cases 1 to 5)


Then we determine p(A3 = x) for 0<x ( a3: 

p(A3 = x) =  p(0 ( M1 ( S1 and S2 < M2 ( N2 and M2=S2 + x)

0<x ( a3
       + p(S1< M1 ( N1 and 0 ( M2 ( S2 and M1=S1 + x)

       + p(S1<M1 ( N1 and S2< M2 ( N2 and M1=S1+x and M2-S2 ( M1-S1)

       + p(S1<M1 ( N1 and S2<M2 ( N2 and M2=S2+x and M1–S1 < M2–S2)

(Steady-state probabilities for P1:

Let us first calculate p(P1 = 0):

p(P1 = 0)  =
p(0 ( M1 ( S1 and 0 ( M2 ( S2 and M1 = S1)


        + p(S1< M1 ( N1 and 0 ( M2 ( S2)


        + p(S1<M1 ( N1 and S2<M2 ( N2 and M1=S1+x and M2-S2 ( M1-S1)

Now, if x(0 we have,

p(P1 = x) =
p(0 (M1( S1 and 0 ( M2 ( S2 and x = S1-M1)                   

0<x ( S1 
     + p(0 (M1( S1 and S2 < M2 ( N2 and x= M2-S2+S1-M1)

+ p(S1<M1(N1 and S2<M2(N2 and M1–S1<M2-S2 and x=M2-S2+S1-M1)

p(P1 = x) = 
p(0 (M1( S1 and S2 < M2 ( N2 and x = M2-S2+S1-M1)                  

S1<x<a3           + p(S1<M1( N1 and S2< M2( N2 and M1–S1<M2-S2 

and x=M2-S2+S1-M1)

p(P1 = x)  =   p(0 (M1( S1 and S2 < M2 ( N2 and x = M2-S2+S1-M1)                   

a3 ( x ( N1
The expressions of steady-state probabilities for P2 are similar to those of p(P1 = x), by replacing indexes 1and 2 respectively, by indexes 2 and 1.
5.2 steady-state probabilities relative to subsystem 2
We do the approximation that variables M3 and A3 are independent.

(Steady-state probabilities for M3:

p(M3=k) = p(M3=k and X=x00) + p(M3=k and X=xx0) + p(M3=k and X=x0x)



+ p(M3=k and X=0)

(Steady-state probabilities for queues P3 and A4:

Since we have already determined the steady-state probabilities corresponding to  station M3 and queue A3, then we can calculate the steady-state probabilities corresponding to queues P3 and A4. Therefore, we have,


p(P3 = x)
=
p(M3 = S3 - A3 - x)


0 < x ( S3

p(A4 = x)
=
p(M3 = S3 - A3 + x)


    x(0

and since variables M3 and A3 are independent, we can write:
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=
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a3
and
p(A4 = x)
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p(M3 = x + S3 – i) p(A3 = i)


   x(0


i=0

And then, we can easily deduce,




S3
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p(P3 = 0) =   1    -
(   p(P3 = x)   and
p(A4 = 0) =     1  -
(  p(A4 = x)




x=1 





x=1

5.3 some performance measures

From the steady-state probabilities determined above, we can evaluate performance measures.

(Proportion of Immediately Satisfied Demands(ID), Backordered Demands(BD) and Rejected Demands (RD):

( A demand will be immediately satisfied if there is at least one finished part in P3 and if queue A3 is not full (i.e. A3 < a3), then,


p(P3 = x and A3 < a3) = p(M3 = S3 – A3 - x and A3 < a3) 




0<x ( S3





S3
a3-1
Thus,

ID 
=
(
(
p(M3 = S3 – i – x) p(A3 = i)





x=1
i=0

( A demand will be backordered if P3 is empty and if A3 is not full (i.e. A3 <a3):










a3-1

Then,

BD
=
p(P3 = 0 and A3 < a3) =
( p(A3 = x) - ID









x=0

( A demand will be rejected if A3 is full, 

Then,

RD
=
p(A3 = a3)

(Average number of Backordered demands (AB):







+(
We have 
AB =
E(A4)     =
(
x p(A4 = x)

 




x=1

(Average number of Finished products for each stage (AFi):

The average number of finished products in P1, P2 and P3, is 





Ni




S3
AFi =  E(Pi)  =
(  x p(Pi = x)
  and
AF3 = E(P3) =
(  x p(P3 = x)
   i=1,2

 

x=1




x=1

(Average Work in process for each stage (AWi):




Ni




+(
We have
AWi = 
(
x p(Mi = x)
and
AW3 =
(  x p(M3 = x)
i=1,2




x= 1




x= 1
5.4 Generalization of the method to more than 3 stages:
Now, we suppose that we add N-1 serial stages after stages 1 and 2 of our considered  system S2. Then the obtained system SN is decomposed into N subsystems. Obviously, subsystems 1 and 2 of SN are similar to those of S2, and thus the analysis is identical. Subsystem i-1 (i=4,…,N) corresponds exactly to the stage i of SN. Modeling of subsystem i-1 is similar to that represented on Figure 4 , by replacing indexes 2, 3 and 4 respectively, by indexes i-1, i and i+1. Then we have (i-1 = p(Pi-1 = 0 / DDi = 0).
For example, if we consider subsystem 3, an entity in station DD4 is waiting for a finished part coming from M3. But in this case, station M3 could be empty because P1 or P2 (or both) were also empty when the demand arrived; so one must wait for an assembled product coming from subsystem 1. Consequently, because we must take into account all precedent subsystems, the study of station DD4 (and then DDi for i=5,…,N+1) is much more complex than the study of DD3. Therefore, we do the following approximation:

If there are entities in DDi (i =4,…,N+1), then station Mi-1 is not empty. Thus, station DDi is modeled as an exponential machine with rate (i-1.

However, we must notice that because we do this approximation, now station DDi (i=4,…, N+1) will not exactly represent queue Ai. The analysis of subsystem i-1 (i=4,…, N+1) necessitates the analysis of DDi and Mi. The resolution is identical to that proposed in the case of serial stages [4] and performance measures, like those calculated for S2, can be determined.

6. CONCLUSION

We have presented a model of base-stock controlled assembly systems that includes stochastic processing times. We have considered that the assembly operation was not necessarily the last operation, so it could be followed by any other operation(s). Procedures were developed in order to evaluate several performance measures.

However, we have introduced a necessary restriction, which is the finite capacity for the queue that contains backordered demands in the first subsystem. Indeed, this restriction is necessary for performing the analysis of subsystem 1 (the infinitesimal generator has finite dimensions).
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