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Abstract: This paper is concerned with reliable multistation series production lines. Items arrive at the first station according to a Poisson distribution with an operation performed on each item by one machine at each station. Every station is allowed to have more than one machines exactly with the some characteristics. The processing times at each station are exponentially distributed. Buffers of non identical capacities are allowed between successive stations. The structure of the transition matrices of these specific type of production lines is examined and a recursive algorithm is developed for generating them. The transition matrices are block-structured and very sparse. By applying the proposed algorithm the transition matrix of a K-station line can be created for any K. This process allows one to obtain the exact solution of the large sparse linear system via the use of the Gauss-Seidel method. By the solution of the linear system the throughput and other performance measures can be calculated.



Introduction and Literature Review

Queueing networks with finite buffers are useful for modeling and analyzing discrete-event systems, especially manufacturing systems. Manufacturing production lines (widely encountered in industry) can be modeled as tandem queueing networks with finite buffers. Each machine is represented by a server and the storage areas are represented by buffers of finite capacity. The times that items (parts) spend on machines are random. This randomness may be due to variability in processing times and/or failures of the machines. Manufacturing production lines can be modeled as tandem queueing networks with reliable servers (if failures of machines are not considered or if they are implicitly represented in the processing times) or unreliable servers (if failures of machines are explicitly represented).

Expect in special cases e.g., queueing networks with reversible routing under repetitive blocking, queueing networks with blocking do not have product form solutions. Therefore exact solutions can only be obtained by means of numerical techniques. However exact analytical results have been reported only for a few cases. Where assumptions are general, results are available only for very short lines. Results for longer production lines are available for restrictive assumptions, for example when exponential or phase-type distributed interarrival and processing times are assumed. Efficient efforts for numerical solutions are given by Hillier and Boling (1967), Papadopoulos, Heavey and O’ Kelly  (1989), Heavey, Papadopoulos and Browne (1993).

The algorithm we have developed allows one to obtain the throughput rate of a K-station production line and other performance measures (such as WIP, etc.) from the stationary distribution for the continuous-time Markov chain representing this queueing process. The algorithm also has the advantage that it models systems which are unbalanced and which have non-identical buffers and service capacities at each station.

There has been limited work devoted to studying procedures leading to the determination of system measures for open queueing networks with finite buffer capacity and multiple servers.

Exact analyses of open queueing network models with phase-type service time distributions have been reported only for a few cases. We mentioned the works of Hillier and Boling (1967), Papadopoulos, Heavey and O’ Kelly (1989), Heavey, Papadopoulos and Browne (1993) and Hillier and So (1995). The phase type assumption permits the establishment of a set of simultaneous linear equations in terms of the stationary probabilities of each state. These may be solved to give the performance measures of the system. The computation soon becomes formidable by the explosive growth of the number of the states. For this reason approximation methods have been developed. Most approximation techniques appearing in the literature rely on decomposition/aggregation methods such as that by Dallery and Frein (1993) and Altiok (1989) or on the expansion method introduced by Sushan Jan and Mac Gregor Smith  (1994)

The main contribution of this work is a recursive algorithm for generating the transition matrices of  exponential production lines with multiple servers, at each workstation.

1.1 Outline of the Paper

We begin with the model description and a brief relevance to the theoretical background (section 2). In section 3 the dimension of the transition matrix A is calculated. The main section is section 4 where the structure of matrix A is described. In section 5 the steps of the recursive algorithm are given. Finally the conclusions and further research are presented.



Description of the Model

In this paper we restrict our attention to open tandem queueing networks with reliable servers and blocking-after-service (BAS). The system to be modeled is a production line consisting of K stations arranged in series where an operation is performed on each job by one of the Ci machines in each station, i = 1, 2, ..., K, with finite intermediate buffers of size Βj, (j = 2, 3, ..., K). Where no buffers are allowed between stations, Bj = 0. A buffer of infinite capacity is assumed in front of the first station with jobs arriving according to a homogeneous Poisson distribution with mean rate λ. Each item enters the line at station 1, passes through all  stations in order and leaves the Kth station (last) in finished form. The processing (service) times are exponential random variables with mean values � EQ \F(1;μi) �, i = 1, 2, ..., K. In general the service rates are not identical (i.e., μi ( μj, for i ( j). We assume that the machines in each station are of the same type and reliable. All the jobs in any station are processed in a FIFO (first-in-first-out) manner. 



Quasi-Birth-Death-Processes

The state of the system under consideration is a two dimensional stochastic process

N(t) = {N1(t), N2(t)}.

Both coordinate random variables are integer and nonnegative. N1(t) represents the number of jobs in the first queue at time t, whereas, N1 is the number of jobs in the first queue at equilibrium (the limit of N1(t) as t tends to infinity). There is no upper limit for N1. N2 represents the state of the system in equilibrium when N1  is assumed constant. N2 may assume only values from 1 to m for some finite m which depends on the server capacities Ci, i = 1, 2, ..., K, at each station and the buffer capacities Bj, j = 1, 2, ..., K of the buffers placed between the stations. Particularly, m is the maximum number of customers of the sub-network, given by

m = � EMBED Equation.2  ���.                                                   (1)

The changes in the state of the system are caused by the occurrence of various events. The occurrence times for all events have negative exponential distributions with strictly positive means. Thus the process is Markovian. Its state-space is

S = {(i,j): i ( 0, 1 ( j ( m}

with the index i specifying the total number of items (jobs) queued up or in service in the first station (Unit-I). Such items are called ‘‘I-customers’’ or ‘‘customers of type I’’. The index j determines the state of the sub-network (Unit-II). It is important to note that upon completion of service in Unit-I an item becomes a ‘‘II-customer’’ or ‘‘customer of type II’’.

Now, the transition matrix P that describes the model has the following block-tri-diagonal form (see Neuts (1981)):



P = � EMBED Equation.2  ���



and the equilibrium equations π(P = 0 can be expressed in matrix-difference form as 

πkA0 + πk+1A1 + πk+2A2 = 0 for k = 0, 1, 2,                              (2)

and

π0A01 + π1A2 = 0                                                     (3)

for the boundary equations. A0 is an (mxm) matrix describing the transitions (inputs) to the first queue (i.e., the arrival of customers of type I). A1 is an (mxm) matrix describing transitions in the sub-network which produce neither inputs to nor outputs from the first queue assuming that the queue is not empty (i.e., transitions between customers of    type II). A2 is an (mxm) matrix describing transitions in the sub-network which simultaneously produce outputs from the first queue (i.e., alterations of customers of type I to customers of type II). Matrices Aj1, j = 0, 1, ..., C1-1 are (mxm) matrices describing transitions in the sub-network which produce neither inputs to nor outputs from the first queue assuming that the queue is empty and j machines out of the C1 are occupied in the first station. Aj0, j = 0, 1, ..., C1-1 are (mxm) matrices describing inputs to the first station assuming that the first queue is empty and j machines out of the C1 are occupied . Aj2, j = 1, 2, ..., C1-1 are (mxm) matrices describing transitions from Unit I (1st station) to the sub-network (Unit II) assuming that the first queue is empty and j machines out of the C1 are occupied in the first station. A Markov chain whose equilibrium equations having the form (2) and (3) was termed by Wallace (1973) a Quasi-Birth-Death (QBD) process. 

Evans proposed that a ‘‘geometric’’ solution, i.e., a solution of the form



πk = π0(Rk                                                          (4)

exists under certain conditions and he offered an algorithm based on finding a root-matrix R* which is the minimal nonnegative solution to the matrix quadratic equation



R2A2 + RA1 + A0 = 0                                                (5)



Calculation of Throughput

Solving the system P2A = 0, P2(e = 1 where A is the conservative stable matrix given by A = A0 + A1 + A2 and e is a (mx1) column vector with all elements equal to 1 will give explicit results for p2(j), j = 1, 2, ..., m. The equilibrium condition is given by 



p2A2e ( p2A0e                                                     (6)

i.e., the output rate of customers of type II is greater than the input (arrival) rate of customers of type I). From this relationship the critical input rate (λ*) to the system can be determined. In the steady-state this critical input rate is identical to the maximum throughput rate of the production line. By calculating the throughput of the system as outlined above we exclude the states of the system where the first station is empty, i.e., sub-matrices A01, Aj,1, Aj,2 are not included. Therefore the throughput of the system is based on the assumption that the first queue is never empty, i.e., the system is saturated.

Notations

Table 1 lists the notation used in the remainder of this article.

         Table 1: Notation

Symbol�Meaning��K�Number of stations��Bi�Buffer capacity preceding the ith station��Si�The ith station��Ci�Number of (same) machines at Si (server capacity of the ith station)��si�Status of station Si��� EMBED Equation.2  ����Number of states in the subnetwork of a K-station system with non-identical buffers, of capacities 

B2, ..., BK and server capacities C1, C2, ..., Ck.��

The states of the sub-network are described by the following vector:

(s2, s3, ..., sK-1, sK)                                                   (7)

where si denotes the number of items (jobs) that belong to station Si, that is the items that are being serviced or are waiting at buffer Bi or are blocked at the preceding station Si-1. The value of s1 is not included to the vector state due to the fact that S1 is never starved. Every component of the state vector si, i = 2, 3, ..., K, satisfies the condition:

0 ( si ( Ci +Bi + Ci-1                                                                        (8)

Table 2 below lists the possible states of a station Si with a short explanation for each one.

   Table 2: Possible states of station Si

Si�Interpretation of the state��0�Station Si idle��1�1 server (machine) from the Ci is occupied��2�2 servers (machines) from the Ci are occupied��..........�..........��Ci�All the servers (machines) are occupied (full busy)��Ci+1�All the servers are occupied and 1 job is 

waiting at buffer Bi��..........�..........��Ci + Bi�All the servers are occupied and the buffer Bi is full��Ci + Bi + 1�Server Si is fully busy, buffer Bi is full and 1 job is blocked at station Si-1��..........�..........��Ci + Bi +Ci-1�Station Si is fully busy, the Bi is full and 

station Si-1 is fully blocked��

The set of linear equations for the solution of P2, the marginal probability density function for the sub-network, can be written as:

                                                             P2 ( A = 0                                                         (9)

In the rest of this article, matrix A is examined in detail

. Number of states

To create the conservative stable matrix A, we must  determine the value of all non-zero elements and their location within the matrix.

Our first concern was the development of an expression that calculates the number of states in the sub-network. The case where buffers are not allowed is investigated first and then the case of buffers being non-identical and positive integer numbers.



Case 1:   Bi = 0,  i =2,3,…,K

We introduce a schematic representation of the feasible states of the sub-network. Each possible state of Si is represented as a leaf of a tree which is named the ‘‘state-tree’’ of the sub-network, i.e., for K=2 stations and B2=0 the capacity of the intermediate buffer and C1,C2 the number of parallel servers at stations 1 and 2, respectively, the  state-tree consists of C1 + C2 + 1 leaves, as given in figure 1:



� EMBED Word.Picture.6  ���



Figure 1 : The state-tree of a line with K=2 stations, B2=0 and C1,C2 server

                 capacities at stations S1,S2, respectively

Consequently, the number of states, denoted by, � EMBED Equation.2  ���= � EMBED Equation.2  ��� is given by

� EMBED Equation.2  ���= C1 + C2 + 1.                                                (10)

For K = 3 stations without buffers between the stations  and C1,C2, C3 the number of parallel servers at stations S1, S2, S3 respectively the state-tree has the scheme, given in Figure 2:



� EMBED Word.Picture.6  ���



Figure 2: The state-tree of a line with K=3 stations, B2=B3=0 and C1,C2, C3 (the shaded states are no-feasible states)

The state-tree for K=3 stations consists of � EMBED Equation.2  ���= C1 + C2 + 1 state-trees for K = 2 stations, each one with � EMBED Equation.2  ��� leaves. But all these leaves do not represent feasible states. For example, for K = 2 stations we must reject from the (C1+1)st state-tree the last leaf and from the (C1+2)nd state-tree the last two leaves and generally from the (C1+j)th state-tree we must reject the last j, j = 1, 2, ..., C2 leaves (see explanation, below). The total number of rejected states is 

1 + 2 + ... + C2 = � EQ \F(C2(C2+1);2) �                                         (11)

Finally the number of feasible states of a state-tree, for K = 3 stations, and no intermediate buffers is:

� EMBED Equation.2  ���� EMBED Equation.2  ���=� EMBED Equation.2  ���= � EMBED Equation.2  ���( � EMBED Equation.2  ���- � EQ \F(C2(C2+1);2) �                                 (12)

Explanation (for the rejection of no feasible states). 

For the K = 3 case, from the state-tree for K=2 stations labeled C1+1, the last leaf, namely, the (C1 +1)(C2+C3) represents the state

S2�S3��C1 + 1�C2 + C3��That is, S3 is fully busy (all - C3 - machines are occupied), S2 is fully blocked (all - C2 - machines are blocked), S1 is fully blocked (all - C1 - machines are blocked) and there is one more 'customer' belonging to station S2. This fact is impossible, thus, this state is rejected. In the same manner, at the state-trees for K=2 stations labeled by C1+2, C1+3, ..., C1 + C2, the last 2, 3, ..., C2, states, respectively, are rejected.

By repeating the above process one can easily calculate the number of feasible states of the sub-network for a line with K = 4 stations

� EMBED Equation.2  ���=� EMBED Equation.2  ���= � EMBED Equation.2  ���( � EMBED Equation.2  ���- � EQ \F(C2(C2+1);2) �(� EMBED Equation.2  ���                      (13)

By induction we obtain: For a production line with K stations the number of feasible states for the sub-network is given by the expression:

� EMBED Equation.2  ���= � EMBED Equation.2  ���( � EMBED Equation.2  ���- � EQ \F(C2(C2+1);2) �(� EMBED Equation.2  ���, K ( 3                   (14)

with

� EMBED Equation.2  ��� = C1 + C2 + 1                                               (15)

� EMBED Equation.2  ���= 1.                                                         (16)

Case 2:  Bi ( N*, i = 2, 3, ..., K

For this case where buffers are of unequal capacity, say B2, B3, ..., BK, the expression that gives the number of feasible states of the sub-network is similar to that obtained for Case 1 where buffers were of zero capacity.

Particularly, the equation for K = 2 stations with server capacities C1, C2 and B2 ( 0 has now the form

� EMBED Equation.2  ���= C1 + C2 + B2 + 1                                            (17)

and generally for K-station lines with server capacities Bj, j = 2, 3, ..., K,  the number of feasible states is given by the relationship :

� EMBED Equation.2  ���= � EMBED Equation.2  ���( � EMBED Equation.2  ���- � EQ \F(C2(C2+1);2) �(� EMBED Equation.2  ���, K ( 3                  (18)

with initial conditions:

� EMBED Equation.2  ��� = C1 + C2 +B2 + 1                                               (19)

� EMBED Equation.2  ���= 1.                                                         (20)

Example: For K = 4, C1 = 1, C2 = 2, C3 = 3, C4 = 4, and B2 = 1, B3 = 0, B4 = 1

� EMBED Equation.2  ���= � EMBED Equation.2  ���( � EMBED Equation.2  ���- � EQ \F(2(2+1);2) �(� EMBED Equation.2  ���,                               (21)

We need to calculate the � EMBED Equation.2  ���. This is given by:

� EMBED Equation.2  ���= � EMBED Equation.2  ���( � EMBED Equation.2  ���- � EQ \F(3(3+1);2) �(M4 =

= (2 + 3 +1)(3 + 4 + 1 + 1) - � EQ \F(3(4;1) �( 1

= 6 ( 9 - 6 = 48                                                                    (22)

Combination of (21) and (22) gives:

� EMBED Equation.2  ���= (1 + 2 + 1 + 1) ( 48 - � EQ \F(2(3;1) �( (3 + 4 + 1 + 1)

= 5 ( 48 - 3 ( 9 = 240 - 27 = 213, feasible states.

The example illustrated above gives rise to the following iterative scheme for the calculation of the number of states of a system with any server and buffer capacities, i.e., a system with K stations, Ci server capacities and buffer capacities B2, ..., BK . 

Initial values

v2 = CK-1 + CK + Bk + 1	(23)

v4 = 1	(24)

� EMBED Equation.2  ���

This iterative scheme calculates the number of states of a K-station system with server capacities C1, C2, ..., CK and buffer capacities B2, B3, ..., BK, by first calculating � EMBED Equation.2  ��� and then � EMBED Equation.2  ���, i.e., by using Bi in the following order:                          i = K, K-1, K-2, ..., 3, 2.



Ordering the states

The ordering of the states affects the structure of the conservative matrix A. The notation that has been introduced is simpler than the proposed in Papadopoulos and O' Kelly (1989). In addition, this notation allows one to calculate in a simple way the average WIP and to distinguish the blocking states (i.e. the states in which some or all of the stations are blocked).



Structure of matrix A

Matrix A is given by the sum of sub-matrices A1, A2 and A0. Sub-matrices A0 and A2 have very simple structures, whereas, sub-matrix A1 has relatively complicated structure. Sub-matrix A1 is examined first and then A0 and A2.



Description of A1

Matrix A1 for any value K (K ( 2) with identical or non-identical buffers and server capacities was found to have the structure described in Figure 3.

�� EMBED Word.Picture.6  ���



Figure 3: Structure of matrix A1





Dimensions of the sub-matrices

C, and D1, D2, ..., � EMBED Equation.2  ��� are all square matrices of order (� EMBED Equation.2  ���x � EMBED Equation.2  ���).

 Ei, and Gi,  i = 1, 2, ..., C2 are square  matrices of  order 

� EMBED Equation.2  ���- i(� EMBED Equation.2  ��� .

 Fj,         j = 1, 2, ..., C1 + B2  are rectangular matrices of order mxn (m ( n) with 

n = � EMBED Equation.2  ��� - � EMBED Equation.2  ���                                              (26)

and

m = n + � EMBED Equation.2  ���.                                     (27)

 Description of A0 

In general, A0 is a (� EMBED Equation.2  ��� x � EMBED Equation.2  ���) matrix with λ in all the diagonal elements.



5.3  Description of A2

In general, A2 is an (MxN) rectangular matrix with M ( N and 

N = � EMBED Equation.2  ��� - � EMBED Equation.2  ���                                           (35)

M = N +� EMBED Equation.2  ���.                                     (36)

A2  is 'almost' diagonal matrix with all 'diagonal' elements equal to  j(1, 1( j ( C1. These elements are located  at the � EMBED Equation.2  ���+1 diagonals.



Therefore the basic structure of A = A0 + A1 + A2 is given by the structure of sub-matrix A1 except:

A does not contain any λ, i.e., λ in the diagonal elements of A0 cancels -λ in the diagonal elements of A1.

The addition of sub-matrix A2.













The algorithm for generating matrix A



This section describes in abstract terms  the algorithm for generating matrix A. As Figure 4 shows the algorithm can be  described in terms of 6 rules. Due to the complexity for the generation  of all sub-matrices, the details are omitted as they  are tedious. The input to the algorithm comprises the number of stations K, the server capacities of each station,  C1, C2, ..., CK, the buffer capacities,  B2, ..., BK and the mean service rates,  (μ1, μ2, ..., μK). Figure 4 depicts a flow chart of the algorithm. In the sequence  we briefly and generally describe the 6 rules.

� 

�

�

�����DO T=3 to K

  X= T- 2

 Y= X+1
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����    DO  Z=1 to Cw-1+BW
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��   END  DO

����    DO  Z=1 to Cw
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�

�

   

��    END  DO



����END DO

�� 







Figure  4 : Flow chart of the algorithm





6.1 A brief description of the 6 rules

Rule 1: (Generation of the  matrix (A1+A0) of a sub-line consisting of the last two stations of the original line)

In the remainder of the paper A1  denotes the sum of A1+A0.

A1(1, 1) = -C1(1

 DO J=1 to  CK

 A1(j+1, j+1) = -C1(1 - j(K

          A1(j+1, j) =  j(K

           END DO

DO J=1 to  BK + CK-1

 A1(CK+1+j, CK+1+j) = -C1(1 - CK (K

         END DO

IF  K = 2

    DO J=1 to C1

          A1(CK+BK+1+j, CK+BK+1+j) = A1(CK+BK+1+j, CK+BK+1+j) + j(1

      END DO

     END IF

i ) When K=2 , Rule 1 generates matrix A1 of the two-station production line. ii) When the line consists of more than two stations (K>2), Rule 1 generates sub-matrix C of a system that consists of the last three stations (SK-2, SK-1, SK) with intermediate buffers BK-1 , BK, and workstations consisting of multiple servers of capacities CK-2, CK-1 and CK, respectively. 

Rule 2 : (Generation of sub-matrices  DZ ) 

C is a square matrix of order � EMBED Equation.2  ���. Rule 2 generates DZ from C by subtracting j(μW, 

 j = z,  1 ( j ( CW from the � EMBED Equation.2  ���- j(� EMBED Equation.2  ��� diagonal elements of C. To the rest j(� EMBED Equation.2  ���, j = z, 1 ( j ( min{CW-1+BW, CW} diagonal elements of C, rule 2 applies specific exceptions, which due to their complexity, are not described here. 

Rule 3 : (Generation of sub-matrices FZ)

Sub-matrix  FZ  is a rectangular and almost diagonal matrix of order mxn where

n = � EMBED Equation.2  ���- � EMBED Equation.2  ���                                            

m = n + � EMBED Equation.2  ���

The top-left element of FZ is located at cell (z(� EMBED Equation.2  ���+1,  z(� EMBED Equation.2  ���+1). The non-zero elements of FZ  have the value  j(μW , j = z,  1 ( j ( CW. The same exceptions of rule 2 (for the generation of DZ) also apply here.

Rule 4 : (Generation of sub-matrices EZ)

Sub-matrix EZ is a square matrix of order  � EMBED Equation.2  ���- z(� EMBED Equation.2  ���. The top-left element of EZ is located at the diagonal cell  

((Cw-1+Bw+1) ( � EMBED Equation.2  ���+1, (Cw-1+Bw+1) ( � EMBED Equation.2  ���+1)

E1 is generated from � EMBED Equation.2  ���  by deleting certain rows and columns. EZ (z>1) is created from EZ - 1 in an analogous way.(Details are again omitted)

Rule 5 : (Generation of sub-matrices GZ)

Sub-matrix GZ is a square diagonal matrix of the same order as sub-matrix EZ. The top-left element of GZ is placed at cell 

((Cw-1+Bw+1) (� EMBED Equation.2  ���+1,  (Cw-1+Bw) ( � EMBED Equation.2  ���+� EMBED Equation.2  ���+1)

The non- zero diagonal elements of GZ  have the value j(μW , j = Cw. Exceptions apply here again. Due to the complexity these are also omitted.

Rule 6 : (Generation of matrix A2)

The dimensions of matrix A2 and its non-zero elements are given in sub-section 5.3

Rules 2-5,  are all contained within the outermost loop in Figure 4. If K =3 then the first iteration of the loop creates A1 for K = 3 stations, BK, BK-1, CK-2, CK-1, CK. If  K ( 3 then it creates the sub-matrix C, for K = 4. This conserves the last 4 stations with BK-2, BK-1, BK, CK-3, CK-2, CK-1, CK. The job continues until it creates A1 for T=K.

� EMBED Word.Picture.6  ���



Figure 5 : Schematic representation of the generation of matrix A1, for K=4 stations and 

     B2=B3=B4=0 and C1=2, C2=1, C3=1 and C4=2.



Application of Algorithm: An Example

Here the explicit derivation of the conservative matrix A is given for K =3, C1 = 3,    C2 = 2, C3 = 1 and B2 = 1, B3 = 0.

Rule 1 

Rule 1 calculates matrix C. Since K>2 this is matrix C for K=3.

�

-3(1�����(3�-3(1- (3�����(3�-3(1- (3�����(3�-3(1- (3��

Rules 2-5 are all contained within a loop (Figure 4) which is executed (K-3+1) times. Therefore, for this example only one iteration of the loop is performed.

Rules 2-3 are all contained within a loop (Figure 4)  which is executed  C1+B2 = 3+1 = 4 times. This loop creates sub-matrices  Di  and Fi  of A1.

Rule 2 and Rule 3 (1st iteration)

Rule 2  generates  the sub-matrix D1 and Rule 3 the sub-matrix F1.

��



(2���-3(1 -(2������(2��(3�-3(1-(2- (3������(2��(3�-3(1 -(2- (3��������(3�-3(1- (3��

Rule 2 and Rule 3 ( 2nd iteration)

Rule 2  generates  the sub-matrix D2 and Rule 3 the sub-matrix F2

��



2(2���-3(1 -2(2������2(2��(3�-3(1-2(2-(3������(2��(3�-3(1 -(2- (3��������(3�-2(1 -  (3��

Rule 2 and Rule 3 (3rd iteration)

Rule 2  generates  the sub-matrix D3 and Rule 3 the sub-matrix F3

��



2(2���-3(1 -2(2������2(2��(3�-3(1-2(2-(3������(2��(3�-2(1 -(2- (3��������(3�-(1 -  (3��

Rule 2 and Rule 3 (4th iteration)

Rule 2 generates the sub-matrix D4 and Rule 3 the sub-matrix F4

��



2(2���-2(1 -2(2������2(2��(3�-2(1-2(2-(3������(2��(3�-(1-(2-(3��������(3�-(3��

Rules 4-5 are all contained within a loop (Figure 4)  which is performed C2 = 2 times. This loop creates sub-matrices  Ei  and Gi of A1.

Rule 4 and Rule 5 (1st iteration)

��Rule 4 generates  the sub-matrix E1 and Rule 5 the sub-matrix G1



2(2���-(1 -2(2�����2(2��(3�-(1-2(2-(3�����(2��(3�-(2-(3��Rule 4 and Rule 5 ( 2nd iteration)

Rule 4 generates the sub-matrix E2 and Rule 5 the sub-matrix G2

��

2(2�� -2(2����2(2�(3�-2(2-(3��

Rule 6

  Rule 6 generates the matrix A2.
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7. Conclusions and Further Research

The paper examines the structure of the transition matrices of reliable exponential production lines and  a recursive algorithm was developed for generating them. The   characterization of the states, as outlined, results in  a simple structure for the conservative matrix A. This affects in a positive way the simplicity and efficiency of the algorithm for the generation of matrix A. This happens because the algorithm can obtain results for a wide range of models as it is  very general and allows all parameters of the system to vary arbitrarily. The next step is the implementation of the above algorithm in a ‘user friendly program’ that could be used as an interactive tool for the systems designers.

The extension of the algorithm to include unreliable production lines would allow greater insight in the modelling of systems. This area is currently being under investigation. Other areas of future  research are:  1) Examination of the optimal buffer allocation of a given Ntotal amount of buffer slots among the interstation buffers in order to maximize the throughput rate or minimize the work-in-process of a production line. 2) Examination of the optimal server allocation of a given Stotal  amount of servers in order to maximize the throughput rate or minimize the work-in-process of the line.
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